
J.A. Jacko (Ed.): Human-Computer Interaction, Part III, HCII 2009, LNCS 5612, pp. 179–188, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Flight Searching – A Comparison of Two User-Interface
Design Strategies

Antti Pirhonen1 and Niko Kotilainen2

1 Department of Computer Science and Information Systems
2 Deparment of Mathematical Information Technology

P.O. Box 35, FI-40014 University of Jyväskylä, Finland
{pianta,npkotila}@jyu.fi

Abstract. The most usable user-interface is not necessarily the most popular.
For example, the extent to which an interaction is based on graphics can depend
highly on convention rather than usability. This study compares contemporary
flight search applications in order to investigate whether a more extensive use
of graphics can enhance usability. Two user-interfaces are compared: one
follows the ideal principles of graphical user-interfaces and direct manipulation,
while the second interface requires text to be entered with a keyboard.
The results of the comparison indicate that even an early prototype of the
graphics based alternative performed better than the typical formula based
search application for several measurements of usability.

Keywords: Flight search, direct manipulation, graphical user interface.

1 Introduction

Why did the graphical user-interface (GUI) become the standard in personal
computing after an era of command line interfaces (CLI)? This is a contentious
question which has no simple answer. When the Microsoft Windows GUI was
introduced, its superiority over CLIs was not at all clear [2, 5]. Some 20 years later, it
can be argued that the first sceptical comments were caused by the relatively slow and
clumsy graphics of the computers of that time. However, the critique against GUIs
was not based on this kind of simple technical argument – everyone knew that the
graphics would inevitably become more fluent over time. Therefore the target of
critical statements was not the first clumsy implementations of GUI but the
underlying logic and principles, recently also trust [8].

Much of this critique can be understood in terms of “user profiles”. Before the
advent of the GUI for personal computers, a typical computer user was a technically
oriented computing specialist. The CLIs and their cryptic commands had been
developed to satisfy the needs of expert users, for whom the essence of computing
was effective code and underlying logic. The only value of the user interface was its
ability to reflect the underlying computation.

180 A. Pirhonen and N. Kotilainen

The introduction of the GUI coincided with a major revolution in computing, which
was not technical by nature. When the personal computer became mass-marketed,
there was a clear need to develop the computer with ordinary people and their practical
needs in mind. From this point on, a typical user was not considered interested in the
effectiveness of the code or other technical issues, as long as the performance of a
given task is effective. Meanwhile, the development of microprocessors has provided
so much computational capacity that the optimisation of code and other traditional
virtues of computing no longer hold the same value. A computer can even be
programmed with the help of graphical tools, which may not produce the neat and
compact code that a human programmer could produce, but sufficiently for a
contemporary processor.

At the start of the GUI revolution, applications were bursting with elaborate
graphics. It is easy to argue that these graphical fireworks were designed to impress
prospective computer buyers, and that most of the new features did not have much to
do with the actual tasks to be performed within the application.

A famous rational argument for GUIs was based on the notion of direct
manipulation [7]. The idea was that with a GUI, the user has direct access to the
entities to be worked with, without the need to remember complex syntaxes.

In this study, we first briefly analyse the current usage of user-interfaces (UIs), and
the arguments for and against the various types. We then examine the differences in
the approaches by comparing a formula-based and a graphics-based UI for a flight
search application. The pros and cons of each strategy are analysed, based on a
usability evaluation.

2 Differences in UIs in Terms of the Usage of Graphics and Input
Devices

The use of graphics divides user interfaces to different genres. In addition to the use
of graphics as part of a visual display unit (VDU), the use of a graphical input device
also creates a distinction between the main categories of user interfaces. Interaction in
a CLI relies on text input, and therefore the dominating input device is a keyboard.
Input for a GUI largely relies on mouse or another two-dimensional pointing device.

After the heyday of an elaborate use of graphics in GUIs, the novelty effect of the
new interaction style has faded out. The GUI has established itself as the dominant
paradigm for interaction design but the use of graphics alone is no longer considered
the hallmark of an effective program. At the same time, the borderline between GUIs
and CLIs has become somewhat ambiguous. A CLI is often implemented within GUI.
For example, many GUIs require text input in certain text fields, making the
interaction with the application similar to a CLI. Therefore, it is not necessarily
appropriate to make a distinction between the categories anymore. Rather, a CLI and
a GUI in their original meaning represent two ends of a continuum. Most user
interfaces fall somewhere between these extremes.

In addition to the use of output graphics and the input device, a third property is
often connected with GUIs: the simulation of real world objects. These kinds of user
interface elements are sometimes referred to as metaphors. Although the use of the

 Flight Searching – A Comparison of Two User-Interface Design Strategies 181

word metaphor in this context is contentious1, it is clear that the imitation of real
world entities is one of the most typical interaction design strategies for creating
intuitive mappings within an application. However, the imitation of physical objects
with digital technology can sometimes hinder the development of technology. For
example, the physical design of the first generation digital cameras highly resembles
that of film cameras. Only a few manufacturers had the courage to completely
redesign the camera. Indeed, most digital cameras continue to carry the outdated
physical restrictions of the cameras of the past with them. This could be due to
conservative consumers who want that their digital cameras to look like cameras.
Presumably, these design inefficiencies will be gradually reduced as new designs gain
mainstream acceptance.

In computer applications, the same kind of evolution can be observed. For
instance, the first graphics based self-service banking applications imitated the
familiar paper forms. After a while, they were replaced with more efficient forms
based on a clear step-by-step procedure instead of the completion of a one single
form.

A related debate from the early 1990’s was evoked by Bonnie Nardi and the notion
of visual formalisms [4]. She strongly opposed ‘metaphors’ in design, i.e., the
imitation of real world objects such as the famous ‘desktop metaphor’. Nardi implies
that not everything in a user-interface needs to have a direct counterpart in the
physical world. The concept of visual formalism was intended to combine direct
manipulation with a user interface designed in terms of the capabilities of the
computer rather than the technology of the past.

While it is possible to discuss different UI-styles and their properties endlessly, it
appears that the borderline between the concept of a GUI and a CLI is usually
technically defined. A GUI is graphical because the output is graphics. For instance,
rather than using letters as the atomic units of words, GUIs draw each letter in VDU
with a large number of pixels. However, in terms of interaction design this kind of
technical definition is not necessarily appropriate. Even in GUIs, CLI-like interaction
can be implemented. Therefore more interesting than comparing a GUI and a CLI is
to analyse how current practices of using GUIs fulfils the original ideas of direct
manipulation. Do UIs provide direct access to underlying entities, or is interaction
based on rules and syntaxes which need to be learned?

3 User-Interface for a Database Query

Databases have inherited much of their terminology from the technology of the past,
like files and folders. This nomenclature has made it easy to adopt highly abstract
computing concepts. What is new compared to paper files and folders is the ease and

1 GUIs are sometimes said to be based on metaphors. However, precisely what is meant by

metaphors in the context of user interfaces is questionable [6]. In metaphor theories,
metaphors are the mental entities on which human conceptualisation processes are built. On
the contrary, in the context of UIs the term metaphor denotes the imitation of real world
objects. Since we find the latter use of the term metaphor inaccurate, we reject the use of the
term in this study in favour of more accurate expressions. In other words, we don’t argue that
the difference between GUI and CLI is that GUIs would be based on metaphors.

182 A. Pirhonen and N. Kotilainen

speed of managing the database. For example, making a query to a large database is
revolutionarily easy compared to paper files. Perhaps, the superiority of digital
databases has made it easy to accept a rather ‘techy’ interaction with the databases.
For example in most applications, the queries require text input similar to that
required in a CLI. The user enters text, and confirms this text input by pressing a
physical (e.g. ‘Enter’ in a keyboard) or a virtual push-button.

Text-based data entry has become so widely accepted in database queries that it has
been implemented in all types of database applications and in a wide variety of
contexts. However, in the following sections we describe an application design
project, which made us consider whether formula based data query is necessarily the
most usable strategy.

3.1 Searching for a Flight: The Creation of FlightMapper

Air traffic has recently continued in growth, partly because of the emergence of
budget airlines that have made flying a possibility for many travellers who could not
previously afford it.

In an effort to cut costs, many airlines have embraced online services. In particular,
flight searches and booking are widely accomplished via the Internet. The quality of
online services is a major competitive issue among airlines, and this should motivate
investment into the development of these services [3]. Flight search facilities and their
quality have been cited as the most important feature of online service from a users’
point-of-view [1].

Online flight searching applications are now available for most flight operators. In
addition, there are a number of services which have access to the databases of several
different operators. This has made it possible to easily search and compare different
flight operators.

All of the flight search applications we found were based on the same kind of user-
interface design concept. The user chooses the departure airport, destination and date.
This information is typed in the fields of a formula and then the search is launched by
clicking a push-button. An intermediate screen shows that the search is being
performed. After a while, the search results are presented.

The kinds of database query formulas described above are so familiar that we
rarely question their appropriateness. However, in the context of a flight search, a
much easier and illustrative process can be implemented with a fairly simple2 web-
application.

The creation of new kind of flight search application, FlightMapper, arose from
very practical needs. It was found that the traditional formula based queries, which
share resemblances with a CLI, might be satisfactory when the exact time, date, and
departure location are fixed and known. However, consumers who have a flexible
schedule but a small budget for travelling are often happy to choose the destination
and the whole itinerary according to the most affordable option rather than be fixed to
a specific date and route. In UI-design terms, these consumers present a different use

2 The system consists of a web server replying to users' queries for flights and a JavaScript

client running in the users' web browser. Queries are made using the AJAX technique. Google
Maps API was used in implementing map functionalities.

 Flight Searching – A Comparison of Two User-Interface Design Strategies 183

scenario than the ordinary business traveller. In this scenario, the traveller is trying to
rapidly figure out the available flight routes between somewhere here to somewhere
there. Rather than having certain airport or city or even country in mind, the user
in our scenario scans opportunities to different areas and is content to continue or
start the journey by train, bus, or some other vehicle to reach an interesting travel
destination.

The starting point for the creation of the user-interface of FlightMapper was an
ordinary map. This map is the abstraction of geography that best meets the
requirements of a nomadic traveller. It illustrates the physical directions and
distances, major towns and borders of countries.

When providing information for the application about the preferred place of
departure, the map is utilised by simply pointing and clicking on a place on the map
with a mouse pointer. The same is done for the preferred destination. FlightMapper
then starts searching flights roughly (within a given radius) from the selected
departure point to roughly the selected arrival point. The application then draws the
available routes on the map, and prints the names of the airports and operators for
each alternative.

If no flights exist, no routes are drawn on the map. The user must then try another
place of departure and/or destination. This change again utilises familiar GUI
routines. The marked point of departure and the point of destination can be dragged-
and-dropped elsewhere on the map. In this way, the user can effortlessly scan a large
number of travel plans.

Figure 1 illustrates the search results when setting the departure point near
Helsinki, Finland and destination point near Amsterdam, The Netherlands. The
application returns several options. The pins indicating the departure and destination
points can be dragged to new locations. Once the pins are dropped again, the
application immediately returns new results.

Fig. 1. Screenshot of search results with FlightMapper

184 A. Pirhonen and N. Kotilainen

The user-interface of FlightMapper relies on graphics and mouse operations like
pointing, choosing, and drag-and-drop. It can therefore be seen as a representative of
GUI and direct manipulation. We decided to contrast it with a typical, formula based
flight search application. We hypothesised that for the needs of the above described
use-scenario, FlightMapper would be faster and generally more appropriate. To verify
this assumption, we organised a usability evaluation to compare the two design
strategies.

3.2 Usability Evaluation Setting

In the usability evaluation, we wanted to compare the overall usability and
performance time in particular, of FlightMapper and a typical flight search
application. From the typical, formula based flight search applications we chose
www.amadeus.net as the representative of this kind of applications. Amadeus was
chosen because it is widely used and has all the typical properties and functionalities
of flight search applications.

Twelve people from the University of Jyväskylä took part. Eight participants were
male and four female. Five of them were staff and seven were students. The ages
ranged from 21 to 48. The completion of the tasks took about 10-15 mins per
participant, and the participants were rewarded with a movie ticket. The sessions were
videotaped so that both the actions of the participant and the screen events could be
traced. We used an external tft-display pointing towards the camera to enable this.

Each of the participants had a set of ten simple tasks to be performed with both
FlightMapper and Amadeus. Six of the participants started with Amadeus, and six
with FlightMapper. The tasks were to find out if there are flight routes available
between given areas. The participants had a printed table of 10 pairs of cities. After
each search, the participant was supposed to mark on the table ‘yes’ or ‘no’.

Before the first task with each application, each participant was given a very short
demonstration about the use of the application. In practice, this meant that the
researcher demonstrated how the application works. No hands-on trials were allowed
before the first task, because we wished to get data about the learnability of the
applications.

Concerning usability, our focus was on performance time. To measuring the time
taken for each task, we did not create any separate log file but relied on the time code
of the digital video. After the sessions, we used the video to record the starting and
completion time of each task. However, in this kind of task, the definition of starting
time might be ambiguous; is it when the gaze is in the next task printed in the paper,
or perhaps when the first physical movement toward the departure city is done with
the mouse? To maintain reliability, we defined the starting time of one task as the
completion time of the previous task. In practice, this meant the point of time when
the participant wrote the search result on the paper. In the case of the first task, the
starting time was defined as the first movement of the mouse.

After the completion of all the search tasks, each participant was asked to complete
a usability evaluation form. The form was a slightly modified (and translated) version
of James Lewis’ post-study system usability questionnaire (PSSQU). The
modifications included the elimination of questions concerning help-options, since
there were none available for FlightMapper. This is because FlightMapper is only a

 Flight Searching – A Comparison of Two User-Interface Design Strategies 185

prototype and lacks many of the functionalities of a final application. The problem of
comparing a prototype with a widely used application is discussed later. Another
modification was due to the comparative setting: the participants were asked the same
questions concerning both applications.

3.3 The Results of the Usability Evaluation

Performance Time
We performed statistical analysis on the recorded performance times. Figure 2
illustrates the summary of the task completion times.

0

5

10

15

20

25

30

35

40

1 2 3 4 5 6 7 8 9 10

City pair

T
im

e,
 s

ec
o

n
d

s

Amadeus

FlightMapper

Fig. 2. Mean performance time, with the fastest and slowest removed

As described in the caption of Figure 2, we rejected the fastest and slowest
performances. This is because according to our observations, both exceptionally fast
and exceptionally slow times were due to experimental shortcomings. For instance, in
some cases when the participant was searching for a flight, the route of the next task
could be seen in the same view, resulting in zero performance time. This occurred
when FlightMapper was looking for airports within a certain range, and by chance, two
airports which were related to consecutive tasks, were in range of one single search.

Figure 2 illustrates the differences in the use of the applications. First of all, it
confirms our hypothesis that FlightMapper is more efficient than a traditional form
based application. As can be seen from the curves, performance times shorten towards
the end of the set with both applications, but with FlightMapper the drop is much
clearer. However, the more drastic drop of performance time with FlightMapper
cannot be interpreted as a higher level of learnability. Presumably, the participants
were familiar with with Amadeus, or at least some similar kind of application.
Interacting with FlightMapper, on the contrary, was not that familiar, although it was
based on familiar GUI routines. Therefore it is natural that the drop of performance
times in the beginning of the session is clear. In other words: the use of familiar
Amadeus did not require learning to the extent as FlightMapper did, and therefore the
learning curves should not be compared.

186 A. Pirhonen and N. Kotilainen

The drop of performance times is not steady with either of the applications. This is
easy to understand, having followed the sessions: it simply took different times to
either find a place on the map (FlightMapper) or to type the name of the city
(Amadeus). The other common feature with these curves is that the second task took
more time than the first one, but this is probably due to difference in time
measurement, as reported above: the starting point of the first task was defined
differently from the starting points of the other tasks. Also, especially with
FlightMapper, it took more time to complete a task when no flights were found; the
user waited for a while before noticing that there were no search results.

In order to summarise the results of performance time measurement, we derived a
t-test and a Wilcoxon test (because of the small number of participants) for the whole
data. In the t-test for medians t = -3.519, df = 11, p = .005 (FlightMapper’s times were
shorter), and for mean performance times t = -4.339, df = 11, p = .001
(FlightMapper’s times were shorter). In Wilcoxon test for medians Z = -2.275, p =
.023 (FlightMapper’s times were shorter), and for mean values Z = -2.903, p = .004
(FlightMapper’s times were shorter).

Subjective Evaluation
The post-study questionnaire (PSSQU) provided with subjective observations about
essential usability issues. The questionnaire measured overall usability, system
usefulness, information quality, and user interface quality, on scale from 1 to 7. The
number 1 indicated the highest value of usability. In the modified and translated
version of the questionnaire there were 14 questions concerning each application. The
mean values of each factor are presented in Table 1.

From the table it can be seen that there were no large differences in the experienced
usability. Concerning all other factors than interface quality, FlightMapper was
assessed slightly better. In usefulness, difference in favour of FlightMapper was
clearest.

Table 1. Average usability scores in subjective evaluation

Overall
usability

System
usefulness

Information
quality

Interface
quality

FlightMapper 2,38 2,13 2,61 2,86

Amadeus 2,59 2,49 2,70 2,81

Difference in
favour of

FlightMapper
0,21 0,36 0,09 -0,05

 Flight Searching – A Comparison of Two User-Interface Design Strategies 187

4 Conclusions and Discussion

We started this report by contrasting CLIs and GUIs. We then compared two user-
interfaces, of which one had inherited essential properties from CLIs, and the other
one had clearly GUI with its extensive use of graphics, use of the mouse as the
dominating input device, and the application of the principles of direct manipulation.

What did we learn then? From a single case study, obviously, no universal
conclusions can be drawn. However, we argue that this case study illustrates issues
which are worth consideration in several contexts.

On the basis of the results of this study, which one is better, formula based
(analogous with CLI) or graphics based (analogous with GUI) user-interface? Let’s
have a look at the quantitative results of this study – FlightMapper, the representative
of GUI-style, was significantly faster, it was found more useful, slightly more usable
and slightly better in terms of information quality. In terms of user-interface quality,
the scores were practically equal.

Are these results clear enough basis for arguing that FlightMapper is a better tool
for finding a flight, not to speak about the comparison of text based and graphics
based user-interfaces? In order to interpret the results, we will need to remember the
setting:

First, the form based application (Amadeus) is widely used, and probably has had a
respectable evolution with numerous re-design iterations, where as FlightMapper is
still an early prototype. Taking into account this David vs. Goliath setting, the results
were relatively positive for FlightMapper.

Second, FlightMapper was based on the use scenario of a flexible traveller. The
tasks in the evaluation can be argued to be a direct reflection of that scenario.
Undoubtedly, with tasks that did not reflect FlightMapper use scenario, the results
would have been very different.

Third, being a prototype, FlightMapper lacks many functionalities that are common
in database queries. Therefore the role of this evaluation should be seen only as a test
of which application best enables a fast scan of available routes. In the further
development of FlightMapper, more functionality will emerge, and a broader
evaluation will be carried out.

This evaluation also showed that there are database query tasks in which
‘traditional’ GUI is faster and generally more usable than a text input based formula.
It is quite understandable, that when more and more public services are going online,
there are things to which people simply get used while using them regularly. They
become de-facto standard. However from the point-of-view of usability, the result is
not necessarily ideal.

The comparison of the two UIs in this study does not follow the traditional division
be the pro-users’ CLI and the consumers’ GUI. The graphics version was faster with
all of the participants, whether technically oriented or not. This shows that different
interaction designs should be considered by all user groups.

The purpose of this study was not to prove one user-interface design strategy as
superior to another. Rather, we are illustrating that in terms of usability, current GUI
design conventions do not always propose the best design practice but can still rely on
the interaction paradigm of CLIs.

188 A. Pirhonen and N. Kotilainen

References

1. Benckendorff, P.: An exploratory analyisis of traveler preferences for airline website
content. Information Technology & Tourism 8, 149–159 (2006)

2. Hazari, S.I., Reaves, R.R.: Student preferences toward microcomputer user interfaces.
Computers & Education 22(3), 225–229 (1994)

3. Long, F., Poskitt, H.: Aerlingus.com – A Usability Case Study. In: Proceedings of the Irish
Ergonomics Society Annual Conference, pp. 42–47 (2003)

4. Nardi, B.A., Zarmer, C.L.: Beyond models and metaphors: Visual formalisms in user
interface design. Journal of Visual Languages and Computing 4, 5–33 (1993)

5. Petre, M., Green, T.R.G.: Is graphical notation really superior to text, or just different?
Some claims by logic designers about graphics in notation. In: Proceedings of the Fifth
Conference on Cognitive Ergonomics, Urbino, Italy, September 3-6 (1990)

6. Pirhonen, A.: To simulate or to stimulate? In search of the power of metaphor in design. In:
Pirhonen, A., Isomäki, H., Roast, C., Saariluoma, P. (eds.) Future Interaction Design, pp.
105–123. Springer, London (2005)

7. Shneiderman, B.: Designing the user interface: Strategies for effective human-computer
interaction. Addison Wesley Longman, Reading (1998)

8. Takayama, L., Kandogan, E.: Trust as an underlying factor of system administrator interface
choice. In: Extended abstracts of CHI 2006, pp. 1391–1396. ACM Press, New York (2006)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

