
8

A Memetic-Neural Approach to Discover
Resources in P2P Networks

Ferrante Neri, Niko Kotilainen, and Mikko Vapa

Department of Mathematical Information Technology, Agora, University of
Jyväskylä, P.O. Box 35 (Agora), FI-40014 University of Jyväskylä, Finland
neferran@cc.jyu.fi, niko.kotilainen@jyu.fi, mikko.vapa@jyu.fi

Summary. This chapter proposes a neural network based approach for solving the re-
source discovery problem in Peer to Peer (P2P) networks and an Adaptive Global Local
Memetic Algorithm (AGLMA) for performing in training of the neural network. The
neural network, which is a multi-layer perceptron neural network, allows the P2P nodes
to efficiently locate resources desired by the user. The necessity of testing the network
in various working conditions, aiming to obtain a robust neural network, introduces
noise in the objective function. The AGLMA is a memetic algorithm which employs
two local search algorithms adaptively activated by an evolutionary framework. These
local searchers, having different features according to the exploration logic and the
pivot rule, have the role of exploring decision space from different and complemen-
tary perspectives. Furthermore, the AGLMA makes an adaptive noise compensation
by means of explicit averaging on the fitness values and a dynamic population sizing
which aims to follow the necessity of the optimization process. The numerical results
demonstrate that the proposed computational intelligence approach leads to an efficient
resource discovery strategy and that the AGLMA outperforms an algorithm classically
employed for executing the neural network training.

Keywords:Memetic Algorithms, NeuralNetworks,P2P Networks, Telecommunication,
Noisy Optimization Problems.

8.1 Introduction

During recent years the use of peer-to-peer networks (P2P) has significantly
increased. P2P networks are widely used to share files or communicate with
each other using Voice over Peer-to-Peer (VoP2P) systems, for example Skype.
Due to the large number of users and large files being shared communication
load induced to the underlying routers is enormous and thus demand of high
performance in peer-to-peer networks is constantly growing.

In order to obtain a proper functioning of a peer-to-peer network a crucial
point is to efficiently execute the peer-to-peer resource discovery, meaning the
search of information (files, users, devices etc.) within a network of computers
connected by Internet. An improper resource discovery mechanism would lead
to overwhelming query traffic within the P2P network and consequently to a
waste of bandwidth of each single user connected to the network.

C. Cotta and J. van Hemert (Eds.): Recent Advances in Evol. Comp., SCI 153, pp. 113–129, 2008.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2008



114 F. Neri, N. Kotilainen, and M. Vapa

Although several proposals are present in commercial packages (e.g., Gnutella
[151] and KaZaA), this problem is still intensively studied in literature. Resource
discovery strategies can be divided into two classes: breadth-first search and
depth-first search. Breadth-First Search (BFS) strategies forward a query to mul-
tiple neighbors at the same time whereas Depth-First Search (DFS) strategies
forward only to one neighbor. In both strategies, the choice of those neighbors
receiving the query is carried out by heuristic methods. These heuristics might
be stochastic e.g. random selection [152], or based on deterministic rules [153].

BFS strategies have been used in Gnutella [151], where the query is forwarded
to all neighbors and the forwarding is controlled by a time-to-live parameter. This
parameter is defined as the amount of hops required to forward the query. Two
nodes are said to be n hops apart if the shortest path between them has length
n [153]. The main disadvantage of the Gnutella’s mechanism is that it generates
a massive traffic of query messages when the time-to-live parameter is high thus
leading to a consumption of an unacceptable amount of bandwidth.

In order to reduce query traffic, Lv et al. [152] proposed the Expanding Ring.
This strategy establishes that the time-to-live parameter is gradually increased
until enough resources have been found. Although use of the Expanding Ring
is beneficial in terms of query reduction, it introduces some delay to resource
discovery and thus implies a longer waiting time for the user. Kalogeraki et
al. [154] proposed a Modified Random Breadth-First Search (MRBFS) as an en-
hancement of the Gnutella’s algorithm. In MRBFS, only a subset of neighbors
are selected randomly for forwarding. They also proposed an intelligent search
mechanism which stores the performance of the queries previously done for each
neighbor. This memory storage is then used to direct the subsequent queries. Fol-
lowing the ideas of Kalogeraki et al., Menascé [155] proposed that only a subset
of neighbors are randomly selected for forwarding. Yang and Garcia-Molina [153]
proposed the Directed BFS (DBFS), which selects the first neighbor based on
one of several heuristics and further uses BFS for forwarding the query. They
also proposed the use of local indices for replicating resources to a certain radius
of hops from a node. In Gnutella2 [156] a trial query is sent to the neighbors
and, on the basis of obtained results, an estimate of how widely the actual query
should be forwarded is calculated.

In the DFS strategies, selection of the neighbor chosen for the query forward-
ing is performed by means of heuristics. The main problem related to use of
this strategy is the proper choice of this heuristic. A popular heuristic employed
with this aim is the random walker which selects the neighbor randomly. The
random walker terminates when a predefined number of hops have been trav-
elled or when enough resources have been found. Lv et al. [152] studied the
use of multiple random walkers which periodically check the query originator
in order to verify if the query should still be forwarded further. Tsoumakos
and Roussopoulos [157] proposed an Adaptive Probabilistic Search (APS). The
APS makes use of feedback from previous queries in order to tune probabilities
for further forwarding of random walkers. Crespo and Garcia-Molina [158] pro-
posed the routing indices, which provide shortcuts for random walkers in locating



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 115

resources. Sarshar et al. [159] proposed the Percolation Search Algorithm (PSA)
for power-law networks. The idea is to replicate a copy of resources to a sufficient
number of nodes and thus ensure that resource discovery algorithm locates at
least one replica of the resource.

The main limitation of the previous studies, for both BFS and DFS strategies,
is that all the approaches are restricted to only one search strategy. On the
contrary, for the same P2P network, in some conditions it is preferable to employ
both BFS and DFS strategies. In order to obtain a flexible search strategy,
which intelligently takes into account the working conditions of the P2P network,
Vapa et al. [160] proposed a neural network based approach (NeuroSearch). This
strategy combines multiple heuristics as inputs of a neural network in order to
classify among all its neighbors those which will receive the query, thus it does
not fix a priori the search strategy (breadth-first or depth-first) to be employed.
Depending on the working conditions of the P2P network, NeuroSearch can
alternate between both search strategies during a single query.

Since NeuroSearch is based on a neural network, it obviously follows that an
initial training is needed. The resulting optimization problem is very challenging
because neural networks have a large number of weights varying from minus to
plus infinity. In addition, in order to obtain a robust search strategy it is required
that training is performed in various working conditions of a P2P network. It
is therefore required that many queries are executed, thus making the training
problem computationally expensive and the optimization environment noisy.

8.2 NeuroSearch - Neural Network Based Query
Forwarding

As highlighted above, NeuroSearch [160] is a neural network-based approach for
solving the resource discovery problem. NeuroSearch combines different local
information units together as an input to multi-layer perceptron (MLP) neu-
ral network [161]. Multi-layer perceptron is a non-linear function approximator,
which is organized into different layers: an input layer, one or more hidden layers
and an output layer. Adjacent layers are connected together with weights, these
weights are the parameters of the function approximator to be determined by
the learning process. Hidden and output layers contain neurons, which take a
weighted sum of outputs from the previous layer and use a non-linear trans-
fer function to produce output to the next layer. NeuroSearch uses two hidden
layers, both having 10 neurons and two different transfer functions in hidden
and output layers. The structure of this neural network has been selected on
the basis of previous studies carried out by means of the P2PRealm simulation
framework [162].

We characterize the query forwarding situation with a model consisting of
1)the previous forwarding node, 2)the currently forwarding node and 3)the re-
ceiver of the currently forwarding node. Upon receiving a query, the currently
forwarding node selects the first of its neighbors and determines the inputs,



116 F. Neri, N. Kotilainen, and M. Vapa

related to that neighbor, of the neural network. Then, the neural network output
is calculated. This output establishes whether or not the query will be forwarded
to the neighbor. Next, all other neighbors including the previous forwarding
node, are processed in a similar manner by means of the same neural network.
If some of the neighbors were forwarded, then new query forwarding situations
will occur until all forwarding nodes have decided not to forward query further.

Fig. 8.1 shows the functioning of a P2P network with neural network based
forwarding.

Fig. 8.1. Query Forwarding

The circles shown in the figure represent the peers of the P2P network. The
arcs between the peers represent the Transmission Control Protocol (TCP) com-
munication links between the peers. The rectangles represent a neural network
evaluation for different neighbors. More specifically, node A denoted with a ques-
tion mark begins a query. It attempts to forward the query to node B. The neural
network in rectangle 1. outputs zero and therefore the query is not forwarded.
Instead the second evaluation for node C, shown in rectangle 2, outputs one and
the query is forwarded to node C. Then node C attempts to forward the query
to neighbor nodes and the nodes B and D receives the query. In the last steps
nodes B and D do not forward the query further and the query ends. The query
enters nodes C and D denoted with an exclamation mark thereby locating two
resource instances.

8.2.1 The Set of the Neural Network Inputs

The MLP uses constant, binary and discrete valued inputs as an information for
making forwarding decisions. Each input Ij is a neuron and all 22 inputs I form
the input layer.

The following input is constant:

(1) Bias takes value 1. Bias is needed in MLP neural networks to approximate
functions with non-zero output in case of zero input.



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 117

The following inputs are binary:

(2) Sent scores 1 if the query has already been forwarded to the receiver. Oth-
erwise it scores 0.
(3) CurrentVisited scores 1 if the query has already been received by the cur-
rently forwarding node, else it scores 0.
(4) From is a binary variable indicating whether a query was received from this
receiver. From scores 1 if the current query was received from this receiver. Oth-
erwise it scores 0.
(5) RandomNeighbor scores 1 for a randomly selected receiver and 0 for other
receivers in the current node.
(6) EnoughReplies scores 1, if through the query path used by the current query
an equal number or more resources have been found as were given in RepliesTo-
Get input parameter (see below). Otherwise EnoughReplies scores 0.
The following inputs are discrete:
(7) Hops is the number of edges the query has travelled in a P2P network (see
definition of Hops in section 8.1).
(8) ToNeighbors is the number of neighbors connected to the receiver.
(9) CurrentNeighbors is the number of neighbors connected to the currently for-
warding node.
(10) FromNeighbors is the number of neighbors connected to the previous for-
warding node.
(11) InitiatorNeighbors is the number of neighbors connected to the query
initiator.
(12) NeighborsOrder is a number associated to each neighbor connected to the
forwarding peer. The NeighborsOrder is assigned by ascent sorting and enumer-
ating (0, 1, 2...) the neighbors according to their degree. By degree of a peer node
we mean the number of neighbors connected to it.
(13) FromNeighborsOrder, indicates the NeighborsOrder of the previous forward-
ing node.
(14) RepliesNow is the number of replies the query locates in its query path.
(15) PacketsNow is the number of packets the query produces in its query path.
(16) RepliesToGet is the number of resources that need to be located.
(17) Forwarded is the number of times the currently forwarding node has for-
warded the query.
(18) NotForwarded is the number of times the current node did not forward the
query.
(19) DecisionsLeft is the number of forwarding “decisions” the current node will
still make for the current query message i.e. how many neighbors have not yet
been evaluated for forwarding the query message.
(20) SentCounter is the number of times the current query has already been
forwarded to the receiver.
(21) CurrentVisitedCounter is the number of times the query has already been
received by the currently forwarding node.
(22) BranchingResourcesMissing estimates how many resources on average
should still be located from the current query path. First the estimate is set



118 F. Neri, N. Kotilainen, and M. Vapa

to the value of RepliesToGet. The estimate is updated each time the current
node has made all the forwarding decisions. If the current node contained the
queried resource, the value is decreased by one. The estimate is then updated
depending on whether the current value is positive or negative. In case of a pos-
itive value, the current value is divided with the number of neighbors receiving
the query. In case of a negative value, the current value is multiplied by the
number of neighbors, which will receive the query.

8.2.2 Input Scaling

To ensure that all inputs are in the range of [0, 1] the discrete inputs need to be
scaled. The discrete inputs can be classified into three categories according to
their original range of variability.

(a) Inputs in the range of [0, ∞] are Hops, NeighborsOrder, FromNeighborsOr-
der, RepliesNow, PacketsNow, RepliesToGet, Forwarded, NotForwarded, Deci-
sionsLeft, SentCounter andCurrentVisitedCounter and they are scaled with the
function s(Ij) = 1

Ij+1
(b)Inputs in the range of [1, ∞] are ToNeighbors, CurrentNeighbors, FromNeigh-
bors and InitiatorNeighbors and they are scaled with s(Ij) = 1

Ij

(c)BranchingResourcesMissing is in the range of [−∞, ∞] and it is scaled with
the sigmoid function s(I22) = 1

1+e−I22

The scaled inputs I are then given to the neural network.

8.2.3 Calculation of the Neural Network Output

The neurons on the hidden layers contain the transfer function t(a) = 2
1+e−2a −1

where a is the sum of the outcoming weighted outputs from the previous (input
or first hidden) layer and Bias.

The output layer neuron contains a transfer function

u(a) =
{

0 if a < 0
1 if a ≥ 0 (8.1)

where a is the sum of the outcoming weighted outputs from the second hidden
layer. The output function is thus defined as follows:

O = f (I) = u

⎛
⎝w3,1 +

L∑
l=2

w3,lt

⎛
⎝w2,1,l +

K∑
k=2

w2,k,lt

⎛
⎝ J∑

j=1

w1,j,ksj (Ij)

⎞
⎠

⎞
⎠

⎞
⎠

(8.2)

where J is the number of inputs, K is the number of neurons on the second layer,
L is the number of neurons on the third layer, w1,j,k is the weight from the jth

input to kth neuron on the first hidden layer, w2,k,l is the weight from the kth

neuron on the first hidden layer to lth neuron on the second hidden layer and
w3,l is the weight from the lth neuron on the second hidden layer to the output



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 119

neuron, w2,1,l is the bias weight associated to the second hidden layer and w3,1
is the bias weight associated to the output layer.

Output O can take a boolean value indicating whether the query is forwarded
to the neighbor node currently being taken into consideration. The neural net-
work output is calculated separately for each neighbor node and after the calcu-
lations, the query is sent to neighbor nodes which had an output value 1.

8.3 The Optimization Problem

The neural network described above is supposed to handle the communication
and data transfer between a couple of peers. As in all cases of the neural networks,
its proper functioning is subject to correctly executed training. The training of a
neural network consists of determination of the set of weight coefficients W . As
shown in formula (8.2), the weights can be divided into three categories on the
basis of the layer to which they belong to. There are 22 input neurons and 10
neurons on both the hidden layers. Since one input is constant (Bias) the total
amount of weights is 22 ∗ 9 + 10 ∗ 9 + 10 = 298. The weights can take values in
the range [−∞, ∞] .

8.3.1 Fitness Formulation

In order to estimate the quality of a candidate solution, the performance of the
P2P network is analyzed with the aid of a simulator whose working principles are
described in [162]. More specifically, the set of weights is given to the simulator
and a certain number n of queries are performed. The total fitness over the n
queries is given by:

F =
n∑

j=1

Fj(W ) (8.3)

where Fj is the fitness contribution from each query. It is important to remark
that multiple queries are needed in order to ensure that the neural network is
robust in different query conditions. In addition, for each query the amount of
Available Resources (AR) instances is known. Thus, AR is a constant value given
a priori.

For each query, the simulator returns two outputs:
(a) the number of query packets P used in the query
(b) the number of found resource instances R during the query

For details regarding the simulation see [162]. These outputs are combined in
the following way in order to determine each Fj :

Fj =

⎧⎪⎪⎨
⎪⎪⎩

0 if P > 300
1 − 1

P+1 if P ≤ 300 AND R = 0
50 ∗ R − P if P ≤ 300 AND 0 < R < AR

2
50 ∗ AR

2 − P if P ≤ 300 AND AR
2 < R

(8.4)



120 F. Neri, N. Kotilainen, and M. Vapa

In formula (8.4), the constant values 300 and 50 have been set according to
the criterion explained in [160].

The first condition in (8.4) ensures that the neural network should eventually
stop forwarding the queries. The second condition controls that if no resources
are found then the neural network increases the number of query packets sent to
the network. The third condition states that if the number of found resources is
not enough then the neural network develops only by locating more resources.
The fourth condition ensures that when half of the available resource instances
are found from the network the fitness grows if the neural network uses fewer
query packets. The fourth condition also upperbounds Fj to 50 ∗ AR

2 − AR
2 =

49∗ AR
2 , because it is imposed that when half of the resource instances are found

P is at minimum AR
2 .

Thus, the problem of discovering resources in the P2P network consists of the
maximization of F in a 298-dimension continuous space:

max (F (W )) in [−∞, ∞]298 (8.5)

Due to the necessity of ensuring robustness of the neural network in different
queries, the fitness value varies with the chosen query. The querying peer and the
queried resource need to be changed to ensure that the neural network is not just
specialized for searching resources from one part of the network or one particular
resource alone. Since n (in our case n = 10) queries are required and they are
chosen at random, fitness F is noisy. This noise does not have any peculiarity
and therefore it can hardly be approximated by a known distribution function.
Let us indicate with PN the distribution of this noise and thus re-formulate the
problem in equation (8.5)

max (F (W ) + Z) in [−∞, ∞]298 ;Z ∼ PN (8.6)

8.3.2 Features of the Decision Space and the Fitness Landscape

As highlighted above, the optimization problem is highly multivariate and is de-
fined in a continuous domain. It obviously follows that the problem is quite chal-
lenging due to a high dimensionality. In addition, presence of the noise enhances
the difficulty of the problem because it introduces some “false” optima into the
landscape which disturb the functioning of any optimization algorithm [163,164].

Due to the structure of each Fj (see equation (8.4)), the fitness landscape
contains discontinuities. In particular, it is relevant to observe that due to the
first condition in (8.4) the fitness landscape contains some plateaus with a null
value as well as some other areas which take non-null values and contain a
variability. In order to give a rough description of the fitness landscape, the
following test has been designed. 2 million candidate solutions have been pseudo-
randomly sampled by means of a uniform distribution within the decision space.
Fig. 8.2 and 8.3 show the histogram and distribution curve, respectively, related
to this test. It should be noted that the y-axis has a logarithmic scale. Fig. 8.2
shows that about half the points take a null fitness value and Fig. 8.3 shows that



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 121

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  500  1000  1500  2000  2500  3000  3500

o
c
c
u
r
r
e
n
c
e
s

fitness value

Fig. 8.2. Histogram of Fitness Values

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0  500  1000  1500  2000  2500  3000  3500

o
c
c
u
r
r
e
n
c
e
s

fitness value

Fig. 8.3. Distribution of Fitness Values

the distribution curve contains a very high, sharp peak in zero and other lower
sharp peaks before 500. This obviously means the fitness landscape contains some
plateau areas for low fitness values (up to 500) and a variational area for high
fitness values. In other words the fitness landscape is locally flat and contains
several areas having a small variation in fitness values [165, 166]. This feature
of the fitness landscape makes the optimization problem very challenging since
many optimization algorithms can easily stagnate or prematurely converge in a
suboptimal plateau.

8.4 The Adaptive Global-Local Memetic Algorithm

In order to solve the problem in (8.5), an Adaptive Global-Local Memetic
Algorithm (AGLMA) has been implemented.

8.4.1 Initialization

An initial sampling made up of Si
pop individual has been executed pseudo-

randomly with a uniform distribution function over the interval [−0.2, 0.2]. This
choice can be briefly justified in the following way. The weights of the initial set
of neural networks must be small and comparable among each other in order to
avoid one or a few weights dominating with respect to the others as suggested
in [167,168].

8.4.2 Parent Selection and Variation Operators

All individuals of the population Spop undergo recombination and each parent
generates an offspring. The variation occurs as follows. For each candidate solu-
tion i is associated a self-adaptive vector hi which represents a scale factor for
the exploration. More specifically, at the first generation the self-adaptive vectors
hi are pseudo-randomly generated with uniform distribution within [−0.2, 0.2].

At the subsequent generations each self-adaptive vector is updated according
to [167,168]:

hk+1
i (j) = hk

i (j) e(τNj(0,1)) for j = 1, 2...n (8.7)

where k is the index of generation, j is the index of variable (n = 298), Nj (0, 1)
is a Gaussian random variable and τ = 1√

2
√

n
= 0.1659. Each corresponding



122 F. Neri, N. Kotilainen, and M. Vapa

candidate solution Wi is then perturbed according to the following formula
[167,168]:

W k+1
i (j) = W k

i + hk+1
i (j)Nj (0, 1) for j = 1, 2...n (8.8)

It is interesting to observe that each component hk
i (j) of the self-adaptive vec-

tor at the kth generation can be seen as the standard deviation of a Gaussian
perturbation.

8.4.3 Fitness Function

In order to take into account the noise, function F is calculated ns times (where
ns stands for number of samples) and an Explicit Averaging technique is applied
[164, 169]. More specifically each set of weights of a neural network (candidate
solution) is evaluated by means of the following formula:

F̂ = F i
mean − σi

√
ns

(8.9)

where F i
mean and σi are respectively the mean value and standard deviation

related to the ns samples performed to the ith candidate solution.
The penalty term σi√

ns
takes into account the distribution of the data and

the number of performed samples [170]. Since the noise strictly depends on the
solution under consideration, it follows that for some solutions the value of σi is
relatively small (stable solutions) and so the penalization is small. On the other
hand, other solutions could be unstable and score 0 during some samples and
a high performance value during other samples. In these cases σi is quite large
and the penalization must be significant.

8.4.4 Local Searchers

Two local search algorithms with different features in terms of search logic and
pivot rule have been employed. These local searchers have the role of support-
ing the evolutionary framework, offering new search directions and exploiting the
available genotypes [171, 172]. The Simulated Annealing (SA) metaheuristic
[173], [174] has been chosen since it offers an exploratory perspective in the de-
cision space which can choose a search direction leading to a basin of attraction
different from where starting point W0 is. The exploration is performed by using
the same mutation scheme as was described in equations (8.7) and (8.8) for an
initial self-adaptive vector h0 pseudo-randomly sampled in [−0.2, 0.2]. The main
reason for employing the SA in the AGLMA is that the evolutionary framework
should be assisted in finding better solutions which improve the available genotype
while at the same time exploring areas of the decision space not yet explored. It
accepts with a certain probability solutions with worse performance in order to
obtain a global enhancement in a more promising basin of attraction. In addition,
the exploratory logic aims to overcome discontinuities of the fitness landscape and
to “jump” into a plateau having better performance. For these reasons the SA has
been employed as a “global” local searcher.



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 123

The application of the SA local searcher can be successful in most cases, in
the early generations, and in the late generations as well. Moreover, due to its
structure the SA can efficiently offer solutions in unexplored basins of attractions
and, therefore, prevent an undesired premature convergence. The most delicate
issue related to the SA is choice of parameters. The SA has two parameters which
are the budget and the initial temperature Temp0. The budget has been fixed at
600 fitness evaluations (in order to have a constant computational cost for the
SA). The setting of the initial temperature Temp0 is performed as explained in
section 8.4.5. The temperature Temp is reduced according to a hyperbolic law
following the suggestions in [175].

The Hooke-Jeeves Algorithm (HJA) [176, 177] is a deterministic local
searcher which has a steepest descent pivot rule. Briefly the implemented HJA
consists of the following. An initial radius d0 (in our implementation d0 = 0.5)
an initial candidate solution W0 and a direction exploratory matrix are required.
In this implementation a standard identity matrix I has been chosen due to the
hypercubic features of the decision space. Let us indicate with I(m, :) the mth

row of the direction matrix with m = 1, 2..n (n = 298).
The HJA consists of an exploratory move and a pattern move. Indicating

with Wcb the current best candidate solution and with d the generic radius of
the search, the HJA during the exploratory move samples the points Wcb(m)+dI
(m, :) with m = 1, 2..n and the points Wcb(m) − dI(m, :) with m = 1, 2..n only
along those directions which turned out unsuccessful during the “+” move. Then,
if a new current best is found Wcb is updated and the pattern move is executed.
If a new current best is not found, d is halved and the exploration is repeated.

The HJA pattern move is an aggressive attempt of the algorithm which aims
to exploit promising search directions. Rather than centering the following ex-
ploration at the most promising explored candidate solution (Wcb), the HJA
tries to move further [178]. The algorithm centers the subsequent exploratory
move at Wcb ±dI(m, :) (“+” or “-” on the basis of the best direction). If this sec-
ond exploratory move does not outperform F̂ (Wcb) (the exploratory move fails),
then an exploratory move with Wcb as the center is performed. The HJA stops
either when d < 0.01 or when the budget condition of 1000 fitness evaluation is
reached.

The HJA is supposed to efficiently exploit promising solutions enhancing their
genotype in a meta-Lamarckian logic and thus assist the evolutionary framework
in quickly climbing the basin of attractions. In this sense the HJA can be con-
sidered as a kind of “local” local searcher integrated in the AGLMA.

8.4.5 Adaptation

An adaptation has been implemented taking into account the features of this
kind of fitness landscape in order to design a robust algorithm [179,171]. At the
end of each generation the following parameter is calculated:

ψ = 1 −
∣∣∣∣∣

F̂avg − F̂best

F̂worst − F̂best

∣∣∣∣∣ (8.10)



124 F. Neri, N. Kotilainen, and M. Vapa

where F̂worst, F̂best, and F̂avg are the worst, best, and average of the fitness
function values in the population, respectively.

As highlighted in [166], ψ is a fitness-based measurement of the fitness di-
versity which is well-suited for flat fitness landscapes. The employment of this
parameter, taking into account the presence of plateaus in the fitness landscape.
ψ, measures the population diversity in terms of fitness and is relative to the
range of the fitness values [F̂best, F̂worst] in the population. Thus, even when all
fitness values are very similar, leading to F̂best and F̂worst being close to each
other, ψ still gives a well scaled measure, since it uses the relative distance of
F̂avg from F̂best. The population has high diversity when ψ ≈ 1 and low diversity
when ψ ≈ 0. A low diversity means that the population is converging (possi-
bly in a suboptimal plateau). This parameter has been used in order to control
coordination among the local searchers and a dynamic population size.

8.4.6 Coordination of the Local Searchers

ψ has been employed in order to execute an adaptive coordination of the local
searchers so as to let them assist the evolutionary framework in the optimization
process.

The SA is activated by the condition ψ ∈ [0.1, 0.5]. This adaptive rule is based
on the observation that for values of ψ > 0.5, the fitness diversity is high and
then the evolutionary framework needs to have a high exploitation of the avail-
able genotypes (see [180], [166] and [181]). In other words, under this condition
the evolutionary framework does not require the assistance of a local searcher. On
the other hand, if ψ < 0.5 the fitness diversity is decreasing and the application
of the SA can introduce a new genotype in the population which can prevent a
premature convergence. Basically, the SA has the potential to detect new promis-
ing solutions outside a suboptimal plateau into which the population could have
fallen. In this sense, the SA has been employed as a local searcher with “global” ex-
ploratory features. The condition regarding the lower bound of usability of the SA
(ψ > 0.1) is due to the consideration that if ψ < 0.1 convergence is approaching
and the fitness value has already been drastically reduced.

Thus, the SA has the role of exploiting already existing good genotypes but
nevertheless to explore other areas of the decision space. Due to its structure,
the SA could lead new search directions but its application can lead to a so-
lution which is worse than that which it started with. For this reason, in our
implementation it is applied to the second best individual. The initial temper-
ature Temp0 has to be chosen for this local searcher. It is adaptively set to be
Temp0 =

∣∣∣F̂avg − F̂best

∣∣∣. This means that the algorithm does not accept worse
solutions when the convergence has practically occurred.

The HJA is activated when ψ < 0.2 and is applied to the solution with best
performance. The basic idea behind this adaptive rule is that the HJA has the
role of quickly improving the best solution while staying in the same basin of
attraction. In this light, the action of the HJA can be seen as purely “local”.
The condition ψ < 0.2 means that the HJA is employed when there are some
chances that optimal convergence is approaching. An early application of this



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 125

local searcher can be inefficient since a high exploitation of solutions having poor
fitness values would not lead to significant improvements of the population.

It should be noted that in the range ψ ∈ [0.1, 0.2] both the local searchers are
applied to the best two individuals of the population. This range is very criti-
cal for the algorithm because the population is tending towards a convergence
but still has not reached such a condition. In this case, there is a high risk of
premature convergence due to the presence of plateaus and suboptimal basins
of attraction or false minima introduced by noise. Thus, the two local searchers
are supposed to “compete and cooperate” within the same generation, merging
the “global” search power of the SA and the “local” search power of the HJA
under supervision of the evolutionary framework.

An additional rule has been implemented. When the SA has succeeded in
enhancing the starting solution, the algorithm attempts to further enhance it by
the application of the HJA. This choice can be justified by the consideration that
when the SA succeeds, it returns a solution having better performance with a
genotype (usually) quite different from the starting one and, therefore, belonging
to a region of the decision space which has not yet been exploited.

8.4.7 Dynamic Population Size in Survivor Selection

The adaptation controls the population size whose dynamic variation has two
combined roles. The first is to massively explore the decision space and thus
prevent a possible premature convergence (see [182], [180]), the second is to
Implicitly Average in order to compensate for noise by means of the evaluations of
similar individuals [169]. The population is resized at each generation according
to the formula:

Spop = Sf
pop + Sv

pop · (1 − ψ) , (8.11)

where Sf
pop and Sv

pop are the fixed minimum and maximum sizes of the variable
population Spop, respectively.

The coefficient ψ is then used to dynamically set the population size [183,184]
in order to prevent a premature convergence and stagnation. According to the
first role, when the population is highly diverse a small number of solutions
need to be exploited. When ψ ≈ 0 the population is converging and a larger
population size is required to increase the exploration. The main idea is that
if a population is in a suboptimal plateau an increase of the population size
enhances the chances of detecting new promising areas of the decision space and
thus prevent premature convergence. On the other hand, if the population is
spread out in the decision space it is highly desirable that the most promising
solution leads the search and that the algorithm exploits this promising search
direction.

According to the second role, it is well-known that large population sizes
are helpful in defeating the noise (Implicitly Averaging) [185,186]. Furthermore,
recent studies [187,170] have noted that the noise jeopardizes proper functioning
of the selection mechanisms, especially in cases of low fitness diversity since the
noise introduces a disturbance in pair-wise comparison. Therefore, the AGLMA



126 F. Neri, N. Kotilainen, and M. Vapa

Pseudo-Random Initial Sampling of the weights W and self-adaptive parameters h;
Fitness evaluation of the initial population by F̂ = F i

mean − σi
√

ns
;

Calculate ψ = 1 −
∣∣∣∣ F̂avg−F̂best

F̂worst−F̂best

∣∣∣∣;
while budget conditions and ψ > 0.01

for all the individuals i
for all the variables j

hi (j) = hi (j) e(τNj(0,1));
Wi (j) = Wi + hi (j) Nj (0, 1);

end-for
end-for
Fitness evaluation of the population by F̂ = F i

mean − σi
√

ns
;

Sort the population made up of parents and offsprings according to their fitness values;
if ψ ∈ [0.1, 0.5]

Execute the SA on the individual with the 2nd best performance;
if ψ < 0.2

Execute the HJA on the individual with the best performance;
end-if
if the SA succeeds

Execute the HJA on the individual enhanced by the SA;
end-if

end-if
Calculate Spop = Sf

pop + Sv
pop · (1 − ψ);

Select the Spop best individuals to the subsequent generation;

Calculate ψ = 1 −
∣∣∣∣ F̂avg −F̂best

F̂worst−F̂best

∣∣∣∣;
end-while

Fig. 8.4. AGLMA pseudo-code

aims to employ a large population size in critical conditions (low diversity) and
a small population size when a massive averaging is unnecessary.

After the calculation of Spop in equation (8.11), the AGLMA selects for the
subsequent generation, among parents and offspring, the Spop candidate solutions
having the best performance.

The algorithm stops when either a budget condition on the number of fitness
evaluations is satisfied or ψ takes a value smaller than 0.01.

Fig. 8.4 shows the pseudo-code of the AGLMA.

8.5 Numerical Results

For the AGLMA 30 simulation experiments have been executed. Each exper-
iment has been stopped after 1500000 fitness evaluations. At the end of each
generation, the best fitness value has been saved. These values have been av-
eraged over the 30 experiments available. The average over the 30 experiments
defines the Average Best Fitness (ABF). Analogously, 30 experiments have been
carried out with the Checkers Algorithm (CA) described in [167,168] according
to the implementation in [160], and the ACA which is the CA with the fitness as
shown in (8.9) and the adaptive population size as shown in (8.11). In addition
a standard real valued Genetic Algorithm (GA) has been run for the problem
under study. The GA employs an arithmetic blend crossover and a Gaussian mu-
tation. For the same P2P network, the BFS according to the implementation in



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 127

Gnutella and the random walker DFS proposed in [152] have been applied. Table
8.1 shows the parameter settings for the three algorithms and the optimization
results. The final fitness F̂ b obtained by the most successful experiment (over
the 30 sample runs), the related number of query packets P used in the query
and the number of found resource instances R during the query are given. In
addition the average best fitness at the end of the experiments < F̂ >, the final
fitness of the least successful experiment F̂w and the related standard deviation
are shown. Since the BFS follows a deterministic logic, thus only one fitness value
is shown. On the contrary, the DFS under study employs a stochastic structure
and thus the same statistic analysis as that of GA, CA, ACA and AGLMA over
30 experiments has been carried out.

Numerical results in Table 8.1 show that the methods employing the neu-
ral network approach are more promising than the classical methods for P2P
networks. Moreover, AGLMA and ACA outperform the CA and the AGLMA
slightly outperformed the ACA in terms of final solution found. The GA per-
formed significantly worse than the other optimization algorithms.

Fig. 8.5 shows a graphical representation of the solution in the most successful
experiment (over the 30 carried out) returned by the proposed AGLMA. An
index of the weights are shown on the x-axis and the corresponding weight
values are shown on the y-axis (see the crosses in figure).

As shown in Fig. 8.5, according to AGLMA, we propose a neural network having
a set of 298 weights, which take small values. More specifically, the proposed neural
network contains 296 weight values between -1 and 1. On the contrary, two weights
belonging to the first hidden layer take the values of around -1.5 and 1.5.

Table 8.1. Parameter setting and numerical results

PARAMETER AGLMA CA ACA GA BFS DFS

EVOLUTIONARY FRAMEWORK

Si
pop 30 30 30 30 – –

Spop ∈ [20, 40] 30 ∈ [20, 40] 30 – –

sample size ns 10 – 10 – – –

SIMULATED ANNEALING

initial temperature Temp0 adaptive – – – – –

temperature decrease hyperbolic – – – – –

maximum budget per run 600 – – – – –

HOOKE-JEEVES ALGORITHM

exploratory radius ∈ [0.5, 0.01] – – – – –

maximum budget per run 1000 – – – – –

NUMERICAL RESULTS

P 350 372 355 497 819 514

R 81 81 81 85 81 81

F̂ b 3700 3678 3695 3366 3231 3536

< F̂ > 3654 3582 3647 2705 – 3363

F̂ w 3506 3502 3504 0 – 3056

std 36.98 37.71 36.47 1068 – 107.9



128 F. Neri, N. Kotilainen, and M. Vapa

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 0  50  100  150  200  250  300

w
e
i
g
h
t
 
v
a
l
u
e

weight index

Fig. 8.5. Distribution of Neural Network Weights

0 5 10 15
x 10

5

2000

2500

3000

3500

fitness evaluation

av
er

ag
e 

b
es

t 
fi

tn
es

s

CA

AGLMA

ACA

GA

Fig. 8.6. Comparison of the algorithmic
performance

1 1.1 1.2 1.3 1.4 1.5
x 10

6

3560

3580

3600

3620

3640

3660

3680

fitness evaluation

av
er

ag
e 

b
es

t 
fi

tn
es

s

CA

AGLMA

ACA

Fig. 8.7. Comparison of the algorithmic
performance (zoom)

Fig. 8.6 shows the comparison of the performance over the 1.5 × 106 fitness
evaluations and Fig. 8.7 shows a zoom detail of the algorithmic performance.

Fig. 8.6 shows that the AGLMA has a slower convergence than the CA and
the ACA but it reaches a final solution having better performance. It is also clear
that the ACA has intermediate performance between the CA and AGLMA. The
ACA trend, in early generations, has a rise quicker than the AGLMA but slower
than the CA. On the other hand, in late generations, the ACA outperforms
the CA but not the AGLMA. As shown in Fig. 8.6, the GA performed much
worse than the CA structured algorithms (CA, ACA, AGLMA) also in terms of
convergence speed.

It can be remarked that the ACA can be seen as an AGLMA which does
not employ local searchers but only executes Implicit (dynamic population size)
and Explicit Averaging (ns re-samples and modified fitness). In other words,
the ACA does not contain the memetic components but does contain the noise
filtering components. Fig. 8.7 shows that the ACA and the AGLMA are much
more robust to noise than the CA. In fact, as shown in Fig. 8.7, the trend of
the CA performance contains a high amplitude (about 20) and frequency ripple
around a mean value, while the ACA and AGLMA performance are roughly
monotonic. The oscillatory trend of the CA performance is due to an incorrect
estimation of candidate solutions. The quick initial rise of the CA performance



8 A Memetic-Neural Approach to Discover Resources in P2P Networks 129

is, according to our interpretation, also due to an overestimation of an unstable
solution. On the contrary, the ACA and the AGLMA efficiently filter the noise
and select only reliable solutions for the subsequent generations.

Regarding effectiveness of the local searchers, the comparison between the
ACA and the AGLMA shows that the AGLMA slightly outperforms the ACA
tending to converge to a solution having a better performance. Moreover it is
shown that after 1.5 × 106 fitness evaluations, the trend of the AGLMA still
continues to grow whilst the other trends seem to have reached a final value.

8.6 Conclusion

This chapter proposes an Adaptive Global Local Memetic Algorithm (AGLMA)
for performing the training of a neural network, which is employed as compu-
tational intelligence logic in P2P resource discovery. The AGLMA employs av-
eraging strategies for adaptively executing noise filtering and local searchers in
order to handle the multivariate fitness landscape. These local searchers execute
the global and local search of the decision space from different perspectives. The
numerical results show that the application of the AGLMA leads to a satisfac-
tory neural network training and thus to an efficient P2P network functioning.
The comparison with two popular metaheuristics present in literature shows that
the proposed approach seems to be promising in terms of final solution found
and reliability in noise environment. Matching with another algorithm with in-
termediate features highlights the effectiveness of each algorithmic component
integrated in the proposed algorithm.

The proposed neural network along with the learning strategy carried by the
AGLMA allows the efficient location of resourceswith little query traffic. Thus, the
user of the P2P network obtains plentiful amounts of information about resources
without consuming a large portion of his own bandwidth for query traffic.

Acknowledgements

We wish to thank Teemu Keltanen and Andrea Caponio for their kind support
in analyzing the data.


	A Memetic-Neural Approach to Discover Resources in P2P Networks
	Introduction
	NeuroSearch - Neural Network Based Query Forwarding
	The Set of the Neural Network Inputs
	Input Scaling
	Calculation of the Neural Network Output

	The Optimization Problem
	Fitness Formulation
	Features of the Decision Space and the Fitness Landscape

	The Adaptive Global-Local Memetic Algorithm
	Initialization
	Parent Selection and Variation Operators
	Fitness Function
	Local Searchers
	Adaptation
	Coordination of the Local Searchers
	Dynamic Population Size in Survivor Selection

	Numerical Results
	Conclusion



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




