
> PAPER IDENTIFICATION NUMBER: 067-04 <

1

Abstract-- Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to
look for information about resources. One solution for the
problem is to use a search algorithm that locates resources based
on the local knowledge about the network. Traditionally, the
search algorithms have been based on few simple rules, which
often reduces the performance from optimal. In this paper, we
describe the results of a process where evolutionary neural
networks are used for finding an efficient search algorithm from a
class of local search algorithms. The initial test results indicate
that an evolutionary optimization process can produce search
algorithm candidates that are competent compared to the
breadth-first search algorithm (BFS) used in Gnutella peer-to-
peer network.

Index Terms-- resource discovery, peer-to-peer networks,
multi-layer perceptrons, genetic algorithms.

I. INTRODUCTION

N the resource discovery problem, any node can possess
resources and query these resources from other nodes in the

network. The problem consists of graph with nodes, links and
resources. Resources are identified by unique IDs and nodes
may contain any number of resources. One node knows only
the resources it is currently hosting. Any node in the graph can
start a query, which means that some of the links are traversed
based on a local decision in the graph. Whenever the query
reaches the node with the queried ID, the node replies. The
goal is to locate a predetermined amount of resource instances
with a given ID using as few query packets as possible.

One possible solution for the resource discovery problem is
the breadth-first search algorithm (BFS) [1]. In BFS a node
that starts a query passes the query to all its neighbors. When
the neighbors receive the query, they pass it further to all their
neighbors except the one from which the query was received.
Nodes cache the messages that they have received and if the
query has already been received from other neighbor then

Manuscript received September 2, 2004. This work was supported in part

by the Graduate School in Electronics, Telecommunications and Automation
(GETA) and Innovations in Business, Communication and Technology
(InBCT) –project of Agora Center.

M. A. Vapa, A. K. Auvinen, and J. T. Vuori are with Department of
Mathematical Information Technology, University of Jyväskylä, Finland (e-
mail: firstname.lastname@jyu.fi).

N. P. Kotilainen is with Agora Center, University of Jyväskylä, Finland (e-
mail: niko.kotilainen@jyu.fi).

H. M. Kainulainen is with WTS Networks, Jyväskylä, Finland (e-mail:
heikki.kainulainen@wts.fi)

query is dropped. Time-to-Live (TTL) value is used to limit
the number of hops the query can take by reducing TTL value
each time a query is received. When TTL decreases to zero the
query is dropped. The BFS algorithm ensures that if a resource
is located in the network it can be found from the network if
TTL is high enough. The downside of the algorithm, however,
is that it uses many query packets to find the needed resources.
Thus, we propose an alternative algorithm that is more
efficient in face of used query packets and evaluate it using
peer-to-peer scenario with power-law distributed topology [2].

The rest of this paper is organized as follows. The next
section presents the references to related work done in P2P
resource discovery. Section III describes the NeuroSearch
algorithm as a solution for the resource discovery problem.
Section IV describes the optimization process and Section V
the test case used in the study. Section VI analyzes the
simulation results and in Section VII the paper is concluded.

II. RELATED WORK

Much research has been done regarding the resource
discovery problem. Adamic et al. [3] and Kim et al. [4]
propose a search strategy that utilizes the topological
properties of a power-law network. The search strategy first
proceeds towards highest-degree node, e.g. the node that has
the highest number of neighbors, and then gradually moves to
lower degree ones. The algorithm locates resources efficiently
if they can be found from the core of the network, but the
performance decreases when the central nodes are revisited in
search for lower degree nodes.

Lv et al. [5] evaluate BFS, expanding ring and random walk
search mechanisms with varying topologies, including random
graphs [2], power-law graphs and a snapshot of the Gnutella
network obtained in October 2000. These researchers find that
BFS is not scalable and in particular on Gnutella and power-
law graphs the effects of flooding are disastrous: the number of
messages increases drastically when TTL is increased.
Expanding ring, where TTL is extended gradually for BFS, is
the first aid to the problem. However, because it forwards
duplicate messages to the nodes that the query has already
reached, a better solution to the problem using random walkers
is proposed by the researchers. A search initiates multiple
walkers and forwards them based on a random selection of a
neighbor. In addition to the TTL as a termination condition for
the walkers, Lv et al. use checking, where the random walkers
periodically check from the query originator whether the

Resource Discovery in P2P Networks Using
Evolutionary Neural Networks

Mikko A. VAPA, Niko P. KOTILAINEN, Annemari K. AUVINEN,
Heikki M. KAINULAINEN, and Jarkko T. VUORI

I

> PAPER IDENTIFICATION NUMBER: 067-04 <

2

walker should be terminated or not. While random walkers
increase the number of hops and thus latency, they decrease
the total traffic because the search proceeds in a depth-first
manner.

Kalogeraki et al. [6] consider two search algorithms for the
resource discovery problem. The Modified Random BFS
Search behaves like BFS, but the neighbors select only a
random subset of neighbors for forwarding the query. This
reduces traffic, but adjusting the correct size of the subset for
various networks may be difficult. The researchers’ work uses
a random graph in which all the nodes have approximately
similar degrees. Thus the performance of the algorithm in
power-law graphs cannot be directly determined from the
results. In another algorithm they present, called Intelligent
Search Mechanism, the nodes keep track of recent query
results provided by their neighbors. When a new query arrives,
the neighbors are sorted based on the similarity of the query to
earlier replies from the neighbor. Because the nodes keep track
of the earlier queries, the performance of the algorithm
improves as the network evolves.

Yang and Garcia-Molina [7] experimented with many types
of directed search strategies based on various heuristics. These
heuristics include the number of results returned, shortest

average time to satisfaction, smallest average number of hops
of received results, the highest number of results returned,
shortest message queue, shortest latency and highest degree.
Their work suggests that, to minimize the time to satisfaction
measure, the best strategy is to pass the query to the neighbor
that has had the shortest average time to satisfaction for last
ten queries. Also, when considering the bandwidth use, the
most reliable measure is the smallest average number of hops
of received results for last ten queries. The heuristics used in
the study are based on history data collected locally in each
node.

Similar use of history data is found from the work by
Tsoumakos and Roussopoulos [8]. In their proposal, called
Adaptive Probabilistic Search algorithm, neighbors keep track
of the success rates of earlier queries and forward random
walkers probabilistically, based on the earlier success rate. The
algorithm is able to adapt to different query patterns and,
therefore, performs better than random walkers.

There are certain limitations in all the approaches described
above. First, each of these algorithms uses some control
parameters (for example time-to-live, the number of walkers or
the proportion of neighbors to forward the query) that can be
used to tune the algorithm. For a search algorithm, the number

Fig. 1: Processing of NeuroSearch resource query and the NeuroSearch neural network

> PAPER IDENTIFICATION NUMBER: 067-04 <

3

of control parameters should be kept to a minimal to allow
zero configurability when applied to a real environment.
Second, while some of these approaches have mechanisms to
adapt to the environment, they do not utilize the entire
potential of the environment because they rely only on one
strategy (for example the similarity of the query and earlier
replies, shortest average time to satisfaction for last 10 queries
or the success rate of earlier queries). In general, only one
strategy cannot be efficient in all scenarios and therefore an
efficient algorithm should be able to utilize many strategies at
the same time.

To overcome these limitations a neural network based
resource discovery algorithm called NeuroSearch was
designed. NeuroSearch learns by itself the correct behavior in
given network conditions and uses many combinations of
strategies to locate resources. To authors' knowledge this is the
first time when neural networks are being applied to resource
discovery problem.

III. NEUROSEARCH RESOURCE DISCOVERY ALGORITHM

The proposed algorithm, called as NeuroSearch, makes
decision to whom of the node's neighbors the resource request
message is forwarded based on the output neuron of three-
layer perceptron neural network. The algorithm is located
inside a peer node as shown in Fig. 1 and is the same for all
peers in the network. NeuroSearch can be represented as a
function }1,0{: →IO , where []71,0∈I is a 7-dimensional

input vector representing the state of a resource discovery
query. The output of O defines whether in a given state query
should be dropped O = 0 or forwarded to a peer O = 1 and is
evaluated for each neighbor peer separately.

When a resource request arrives to the algorithm it goes
through all the node's neighbors (denoted as receivers) one by
one with the neural network. The input parameters for the
neural network are:

• Bias is the bias term and has value 1.
• Hops is the number of hops the message has travelled.
• NeighborsOrder indicates in which rank this receiver

is in terms of number of neighbors compared to other
neighbors. The connection with highest rank has the
value of 0, second rank has the value of 1 and so on.

• ToNeighbors is the number of the receiver's neighbors.
• CurrentNeighbors is the number of node's neighbors.
• Sent has value 1 if the message has already been

forwarded to the receiver. Otherwise it has value of 0.
• Received has value 1 if the message has been received

earlier, else it has value of 0.
Hops and NeighborsOrder are scaled with the function

1

1
)(

+
=

x
xf and Neighbors and CurrentNeighbors with

x
xf

1
)(= before giving them to the neural network. Scaling is

performed to ensure that all the inputs are between 0 and 1.
There are two hidden layers in the network. In the first

hidden layer there are 15 nodes + bias and in the second

hidden layer 3 nodes + bias. Tanh is used as an activation

function in the hidden layers: 1
1

2
)(

2
−

+
= − ae

at , where a is the

weighted sum of inputs to a neuron. Activation function in the

output node is the threshold function
�
�
�

≥
<

=
0,1

0,0
)(

a

a
as .

Combining all together, the output O of the neural network
can be calculated with the following formula:

 � � �
= = =

++=
4

1

16

1

7

1
123)))),((1(1(

k j i
iijk IfwtwtwsO

where iI is the value of input parameter i and xyw the neural

network weights on layer x in position y.
Whenever the query locates a queried resource a reply

message is sent back to the neighbor, which forwarded the
request to the node. When all the nodes in the query path have
forwarded the reply message backward, it is finally received
by the query initiator.

IV. NEURAL NETWORK OPTIMIZATION

The weights xyw are unknown and therefore they need to be

adjusted to appropriate values. For doing this we use methods
of evolutionary computing [9]. The decision, which neural
networks are better than the others is done by counting the
query packets traversed in the test network and found
resources. The fitness for the neural network is defined in two
parts. Each query j is scored for the neural network h and the
fitness is calculated by summing up all the scores after n

queries: �
=

=
n

j
jh scorefitness

1

. The score is defined with the

following conditions:
1. If packets > 300 then score = 0

2. If foundResources = 0 then score =
1

1
1

+
−

packets

3. If foundResources < availableResources / 2 and
foundResources > 0 then score = 50 ×
foundResources – packets

4. If foundResources ≥ availableResources / 2 then
score = 50 × availableResources / 2 – packets

In the equations availableResources is the maximum
number of resource intances that can be located in the query,
foundResources is the number of resource instances that the
neural network was able to locate for the query, and packets is
the number of query packets the neural network used for the
query. The constant value 300 was set as criterion for
determining when the neural network is considered to forward
the query indefinitely and the query can be stopped. Another
constant value, 50, was selected to be large enough to guide
the training process towards neural networks that locate more
resources than other neural networks. Now a neural network
could spend 49 query packets more in a query to locate one
additional resource compared to other neural network, which
located one resource less.

The first rule ascertains that an algorithm that eventually

> PAPER IDENTIFICATION NUMBER: 067-04 <

4

stops is always better than algorithm that does not. The goal of
finding half of the available resource instances was set to
demonstrate the algorithm’s ability to balance on a
predetermined quality of service level and not just on locating
all resource instances or one resource instance. The second
rule makes sure that if none of the resources are found then the
neural network should increase the number of query packets
sent to the network. The third rule states that if the number of
found resources is not enough then the neural network
develops only by locating more resources. Finally the last rule
ensures that when half of the available resource instances are
found from the network the fitness grows if neural network
uses fewer query packets.

The optimization process had an initial population of 30
neural networks whose weights were randomly defined from
interval [-0.2, 0.2]. Next, every neural network was tested in
the peer-to-peer simulation environment and fitness value
calculated. When all neural networks had been tested 15 best
were chosen for mutation and used to breed the new generation
of neural networks. As a result, 30 neural networks were
available for testing the new generation.

Mutation was based on the Gaussian random variation and
used weighted mutation parameter to improve the adaptability
of the evolutionary search. The random variation function was
similar to the one used by Fogel and Chellapilla in their
research [10] and is given as:

 ,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ

 ,,...,1),1,0()()()(' wj
j

iii NjNjjwjw =+= σ

where wN = is the total number of weights and bias terms in

the neural network,

wN2

1=τ ,)1,0(jN is a standard

Gaussian random variable resampled for every j, σ is the self-
adaptive parameter vector for defining the step size for finding
the new weight,)(' jwi

 is the new weight value and index

1851 ≤≤ i denotes the number of neuron enumerated over all
layers.

V. SIMULATION ENVIRONMENT

As a peer-to-peer simulation environment, we used Peer-to-
Peer Realm (P2PRealm) network simulator [11] that we have
developed. The simulator can be used to simulate the behavior
of a static peer-to-peer network and to train neural networks
using Gaussian random variation. P2PRealm has been
implemented using Java.

In the test case we used power-law graphs generated using
the Barabási-Albert model [12]. A power-law network’s

neighbor distribution follows the power-curve
γk

kP
1

)(= ,

where 3=γ for Barabási-Albert graph. Therefore in power-

law networks there exist few hubs in the network that have
many neighbors as well as many nodes that have only few
neighbors. A power-law graph was selected because existing

P2P networks have shown to express power-law dependencies
[13]. The graphs tested contained 100 nodes with the highest
degree node having 25 neighbors. Small network size was
selected to allow visualisation of query paths in the network.
Dynamic changes e.g., node failures were not taken into
account to simplify the analysis. However, the approach can be
applied in dynamic scenarios also as shown in [14].

The test case data was divided into three distinct data sets as
described in [15]: a training set, a generalization set and a
validation set. Training set is used for training the neural
network. Generalization set is used to measure how well the
trained neural network performs with a new data set indicating
neural network’s ability to generalize. When performance
starts to decrease in generalization set the training can be
stopped, because the neural network adapts only to the training
set if training process is continued. Validation set is used as an
objective measure to verify how well the algorithm performs
with arbitrarily chosen new data set and ensures that the true
generalization ability of the neural network is being measured.

The training set contained two power-law topologies with
both being queried n = 50 times per generation for each neural
network. Two topologies were used to have neural networks
adapt to a wider range of situations than one topology would
have provided. The generalization set consisted of two power-
law topologies with 50 queries. When the performance started
to decrease in the generalization set the neural network having
highest fitness was selected and, as a validation set, one
topology with 100 queries was used to produce the final
simulation results.

For each topology, resource instances were allocated based
on the number of neighbors each node has. There were 25
different resources in the test case and the number of different
resources in a node was the same as the number of neighbors
the node had. This means that the largest hub had one instance
of all resources and the lower degree nodes only some of
these, randomly chosen from uniform distribution. The
querying nodes and queried resources were selected also
randomly from a uniform distribution for each query.

As stopping criteria for the optimization process, 100,000
generations were set. This seemed to take approximately two

Fig. 2: Evolution of the best neural networks in each
generation for training and generalization sets

> PAPER IDENTIFICATION NUMBER: 067-04 <

5

weeks on our desktop PC equipped with an AMD Athlon XP
1800 processor. The evolution of the best neural network in
each generation is shown in Fig. 2.

VI. SIMULATION RESULTS

To evaluate the difference between BFS and NeuroSearch,
we selected the best algorithm at the 85,736th generation and
calculated the number of packets used and found resources for
100 different queries using validation set. The 85,736th
generation was selected because between the 80,000 and
90,000 generations the neural networks had achieved steadily
good results and, in particular, in the 85,736th generation,
neural network had the best fitness. The results are presented
in Fig. 3 and Fig. 4.

The results of Fig. 3 show that the performance of
NeuroSearch regarding the number of packets is nearer to BFS
with a time-to-live value 2 (BFS-2), rather than BFS with a
time-to-live value 3 (BFS-3). In average NeuroSearch
consumes 47.2 packets per query whereas BFS-2 consumes
30.0 and BFS-3 122.0 packets. The reason why there is some
variation in the number of packets for successive BFS queries
is that the number of delivered packets depends on which node
is querying. If the query starts from a central node (nodes 0-
10), it will produce more packets than the same query started
from an edge node (nodes 90-99) because the edge query has
fewer connections where BFS can spread. In case of
NeuroSearch, the performance is stable and does not depend
on which node is querying.

Fig. 4 shows how many resources the algorithms were able
to locate. NeuroSearch’s performance in terms of located
resources is quite similar to BFS-2 at central nodes, but better
in the edge nodes. Compared to BFS-3 NeuroSearch’s
performance is constantly lower, reaching the same
performance level only at some edge nodes. The reason why
NeuroSearch is satisfied with this level of performance is that
it has already reached the goal of finding half of the available
resources as defined in the fitness function and locating more
resources is not needed.

By calculating the ratio between the located resources and

used query packets we can determine the efficiency of the
algorithms. These values are shown in Table I. The results
show that NeuroSearch’s efficiency is at the same level as
BFS-2’s locating a new resource every fifth packet. BFS-3
locates a new resource approximately every ninth packet.
Efficiency is easier to keep high when locating only few
resources because usually those can be found from the central
nodes alone. When the number of needed resources increases,
query has to spread more to the edges to locate the additional
resources. Therefore the efficiency of BFS-3 decreases
significantly. BFS-2 and NeuroSearch achieve near similar
efficiency indicating that NeuroSearch is able to sustain a good
efficiency even though it needs to locate more resources than
BFS-2.

For each query, NeuroSearch locates approximately half of
the resources or more, which can be seen in Fig. 5. There are
six queries in which NeuroSearch misses the target to locate
half of the resources. This variation results from the difference

Fig. 3: Number of packets used by the algorithms

Fig. 4: Number of resources found by the algorithms

Fig. 5: Difference of located resources to half of resources

TABLE I
EFFICIENCY OF THE ALGORITHMS

Algorithm Packets Resources Efficiency

BFS-2 3000 619 0.2063
BFS-3 12202 1295 0.1061
NeuroSearch 4719 975 0.2066

> PAPER IDENTIFICATION NUMBER: 067-04 <

6

between the training set and the validation set. Nonetheless,
the results indicate that the optimization process has found an
algorithm that is able to locate nearly half of the resources
from the network with high probability.

We analyzed the behavior of the best-evolved neural
network by tracking the path used by the queries. NeuroSearch
seems to prefer central nodes early in the query and uses
multiple paths for doing this. After reaching central nodes or
one hop later the spreading is stopped. The maximum number
of hops is 5. As verification for this the behavior of a typical
NeuroSearch query started from an edge node is illustrated in
Fig. 5. In the figure the query travels through the connections
denoted with a black line starting from node 99 with question
mark (?). Nodes marked with an exclamation mark (!) contain
the queried resource. In total the query uses 49 packets and
locates 11 resources. Six connections are traversed from both
directions, which is not shown in the figure.

VII. CONCLUSION

In this paper, a new resource discovery algorithm has been
proposed. NeuroSearch algorithm takes into account the
special characteristics of its environment and can be adjusted
to different kind of P2P networks. The algorithm’s
performance is also stable and competitive compared to the
BFS algorithm.

While NeuroSearch performs well compared to BFS it is by

no means yet designed to be optimal. For example,
NeuroSearch does not yet include history-based inputs even
though they would significantly improve the performance.
Therefore, the results obtained in [3]-[8] will be considered in
forthcoming research on NeuroSearch. There are also other
directions that were left out of this research. First, we are
studying what improvements to the performance would be
gained by varying the neural network’s internal structure.
Second, we are aiming to find out what are the scalability
factors of NeuroSearch when the network size grows, and third
we are developing an optimal resource discovery algorithm
using global knowledge to be able to measure the best
efficiency a resource discovery algorithm can achieve. Also,
we are working on a solution to speed up the optimization
process by parallelizing the evolutionary algorithm using
distributed computing. This helps us to more accurately
determine the performance maximum of NeuroSearch.

ACKNOWLEDGMENT

The authors would like to thank the co-designers of
NeuroSearch Joni Töyrylä, Yevgeniy Ivanchenko, Matthieu
Weber and Hermanni Hyytiälä. Also we thank Tommi
Kärkkäinen for giving useful hints how to develop the
algorithm further and Barbara Crawford for proofreading the
article.

Fig. 5: Typical NeuroSearch resource query

> PAPER IDENTIFICATION NUMBER: 067-04 <

7

REFERENCES

[1] N. A. Lynch, Distributed Algorithms, Morgan Kauffmann Publishers,
1996.

[2] A. Barabási, Linked, Perseus Publishing, 2002.
[3] L. A. Adamic, R. M. Lukose, and B. A. Huberman, “Local Search in

Unstructured Networks” , in Handbook of Graphs and Networks: From
the Genome to the Internet, Wiley-VCH, 2003, pp. 295-317.

[4] B. J. Kim, C. N. Yoon, S. K. Han, and H. Jeong, ”Path finding strategies
in scale-free networks” , Physical Review E 65, 2002.

[5] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and Replication
in Unstructured Peer-to-Peer Networks” , in Proceedings of the 16th
International Conference on Supercomputing, ACM Press, 2002, pp.
84-95.

[6] V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yatzi, ”A Local
Search Mechanism for Peer-to-Peer Networks” , in Proceedings of the
11th International Conference on Information and Knowledge
Management, ACM Press, 2002, pp. 300-307.

[7] B. Yang and H. Garcia-Molina, “ Improving search in peer-to-peer
networks,” in Proceedings of the 22nd IEEE International Conference
on Distributed Computing Systems (ICDCS’02), 2002.

[8] D. Tsoumakos and N. Roussopoulos, ”Adaptive Probabilistic Search for
Peer-to-Peer Networks” , in Proceedings of the Third IEEE
International Conference on P2P Computing (P2P2003), IEEE Press,
2003, pp. 102-109.

[9] K. Miettinen, M. Mäkelä, and P. Neittaanmäki and J. Périaux (eds.),
Evolutionary algorithms in engineering and computer science, John
Wiley & Sons, 1999.

[10] K. Chellapilla and D. Fogel, “Evolving neural networks to play checkers
without relying on expert knowledge” , IEEE Trans. on Neural
Networks, 10 (6), pp. 1382-1391, 1999.

[11] J. Töyrylä, Building NeuroSearch – Intelligent Evolutionary Search
Algorithm For Peer-to-Peer Environment, Master’s Thesis, University
of Jyväskylä, 2004.

[12] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks” , Science 286 (1999) 509-512.

[13] M. A. Jovanovic, F. S. Annexstein, and K. A. Berman, Scalability
Issues in Large Peer-to-Peer Networks – A Case Study of Gnutella,
Technical report, University of Cincinnati, 2001.

[14] Y. Ivanchenko, Adaptation of Neural Nets For Resource Discovery
Problem in Dynamic And Distributed P2P Environment, Master’s
Thesis, University of Jyväskylä, 2004.

[15] A. P. Engelbrecht, Computational Intelligence: An Introduction, John
Wiley & Sons Ltd, 2002.

