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Abstract-- Resource discovery is an essential problem in peer-

to-peer networks since there is no centralized index in which to 
look for information about resources. One solution for the 
problem is to use a search algorithm that locates resources based 
on the local knowledge about the network. Traditionally, the 
search algorithms have been based on few simple rules, which 
often reduces the performance from optimal. In this paper, we 
describe the results of a process where evolutionary neural 
networks are used for finding an efficient search algorithm from a 
class of local search algorithms. The initial test results indicate 
that an evolutionary optimization process can produce search 
algorithm candidates that are competent compared to the 
breadth-first search algorithm (BFS) used in Gnutella peer-to-
peer network. 
 

Index Terms-- resource discovery, peer-to-peer networks, 
multi-layer perceptrons, genetic algorithms.  

I. INTRODUCTION 

N the resource discovery problem, any node can possess 
resources and query these resources from other nodes in the 

network. The problem consists of graph with nodes, links and 
resources. Resources are identified by unique IDs and nodes 
may contain any number of resources. One node knows only 
the resources it is currently hosting. Any node in the graph can 
start a query, which means that some of the links are traversed 
based on a local decision in the graph. Whenever the query 
reaches the node with the queried ID, the node replies. The 
goal is to locate a predetermined amount of resource instances 
with a given ID using as few query packets as possible.  

One possible solution for the resource discovery problem is 
the breadth-first search algorithm (BFS) [1]. In BFS a node 
that starts a query passes the query to all its neighbors. When 
the neighbors receive the query, they pass it further to all their 
neighbors except the one from which the query was received. 
Nodes cache the messages that they have received and if the 
query has already been received from other neighbor then 
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query is dropped. Time-to-Live (TTL) value is used to limit 
the number of hops the query can take by reducing TTL value 
each time a query is received. When TTL decreases to zero the 
query is dropped. The BFS algorithm ensures that if a resource 
is located in the network it can be found from the network if 
TTL is high enough. The downside of the algorithm, however, 
is that it uses many query packets to find the needed resources. 
Thus, we propose an alternative algorithm that is more 
efficient in face of used query packets and evaluate it using 
peer-to-peer scenario with power-law distributed topology [2]. 

The rest of this paper is organized as follows. The next 
section presents the references to related work done in P2P 
resource discovery. Section III describes the NeuroSearch 
algorithm as a solution for the resource discovery problem. 
Section IV describes the optimization process and Section V 
the test case used in the study. Section VI analyzes the 
simulation results and in Section VII the paper is concluded. 

II. RELATED WORK  

Much research has been done regarding the resource 
discovery problem. Adamic et al. [3] and Kim et al. [4] 
propose a search strategy that utilizes the topological 
properties of a power-law network. The search strategy first 
proceeds towards highest-degree node, e.g. the node that has 
the highest number of neighbors, and then gradually moves to 
lower degree ones. The algorithm locates resources efficiently 
if they can be found from the core of the network, but the 
performance decreases when the central nodes are revisited in 
search for lower degree nodes.  

Lv et al. [5] evaluate BFS, expanding ring and random walk 
search mechanisms with varying topologies, including random 
graphs [2], power-law graphs and a snapshot of the Gnutella 
network obtained in October 2000. These researchers find that 
BFS is not scalable and in particular on Gnutella and power-
law graphs the effects of flooding are disastrous: the number of 
messages increases drastically when TTL is increased. 
Expanding ring, where TTL is extended gradually for BFS, is 
the first aid to the problem. However, because it forwards 
duplicate messages to the nodes that the query has already 
reached, a better solution to the problem using random walkers 
is proposed by the researchers. A search initiates multiple 
walkers and forwards them based on a random selection of a 
neighbor. In addition to the TTL as a termination condition for 
the walkers, Lv et al. use checking, where the random walkers 
periodically check from the query originator whether the 
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walker should be terminated or not. While random walkers 
increase the number of hops and thus latency, they decrease 
the total traffic because the search proceeds in a depth-first 
manner.  

Kalogeraki et al. [6] consider two search algorithms for the 
resource discovery problem. The Modified Random BFS 
Search behaves like BFS, but the neighbors select only a 
random subset of neighbors for forwarding the query. This 
reduces traffic, but adjusting the correct size of the subset for 
various networks may be difficult. The researchers’  work uses 
a random graph in which all the nodes have approximately 
similar degrees. Thus the performance of the algorithm in 
power-law graphs cannot be directly determined from the 
results. In another algorithm they present, called Intelligent 
Search Mechanism, the nodes keep track of recent query 
results provided by their neighbors. When a new query arrives, 
the neighbors are sorted based on the similarity of the query to 
earlier replies from the neighbor. Because the nodes keep track 
of the earlier queries, the performance of the algorithm 
improves as the network evolves. 

Yang and Garcia-Molina [7] experimented with many types 
of directed search strategies based on various heuristics. These 
heuristics include the number of results returned, shortest 

average time to satisfaction, smallest average number of hops 
of received results, the highest number of results returned, 
shortest message queue, shortest latency and highest degree. 
Their work suggests that, to minimize the time to satisfaction 
measure, the best strategy is to pass the query to the neighbor 
that has had the shortest average time to satisfaction for last 
ten queries. Also, when considering the bandwidth use, the 
most reliable measure is the smallest average number of hops 
of received results for last ten queries. The heuristics used in 
the study are based on history data collected locally in each 
node. 

Similar use of history data is found from the work by 
Tsoumakos and Roussopoulos [8]. In their proposal, called 
Adaptive Probabilistic Search algorithm, neighbors keep track 
of the success rates of earlier queries and forward random 
walkers probabilistically, based on the earlier success rate. The 
algorithm is able to adapt to different query patterns and, 
therefore, performs better than random walkers. 

There are certain limitations in all the approaches described 
above. First, each of these algorithms uses some control 
parameters (for example time-to-live, the number of walkers or 
the proportion of neighbors to forward the query) that can be 
used to tune the algorithm. For a search algorithm, the number 

 

Fig. 1: Processing of NeuroSearch resource query and the NeuroSearch neural network 



> PAPER IDENTIFICATION NUMBER: 067-04 < 
 

 

3 

of control parameters should be kept to a minimal to allow 
zero configurability when applied to a real environment. 
Second, while some of these approaches have mechanisms to 
adapt to the environment, they do not utilize the entire 
potential of the environment because they rely only on one 
strategy (for example the similarity of the query and earlier 
replies, shortest average time to satisfaction for last 10 queries 
or the success rate of earlier queries). In general, only one 
strategy cannot be efficient in all scenarios and therefore an 
efficient algorithm should be able to utilize many strategies at 
the same time. 

To overcome these limitations a neural network based 
resource discovery algorithm called NeuroSearch was 
designed. NeuroSearch learns by itself the correct behavior in 
given network conditions and uses many combinations of 
strategies to locate resources. To authors' knowledge this is the 
first time when neural networks are being applied to resource 
discovery problem. 

III. NEUROSEARCH RESOURCE DISCOVERY ALGORITHM 

The proposed algorithm, called as NeuroSearch, makes 
decision to whom of the node's neighbors the resource request 
message is forwarded based on the output neuron of three-
layer perceptron neural network. The algorithm is located 
inside a peer node as shown in Fig. 1 and is the same for all 
peers in the network. NeuroSearch can be represented as a 
function }1,0{: →IO , where [ ]71,0∈I  is a 7-dimensional 

input vector representing the state of a resource discovery 
query. The output of O defines whether in a given state query 
should be dropped O = 0 or forwarded to a peer O = 1 and is 
evaluated for each neighbor peer separately. 

When a resource request arrives to the algorithm it goes 
through all the node's neighbors (denoted as receivers) one by 
one with the neural network. The input parameters for the 
neural network are: 

• Bias is the bias term and has value 1. 
• Hops is the number of hops the message has travelled. 
• NeighborsOrder indicates in which rank this receiver 

is in terms of number of neighbors compared to other 
neighbors. The connection with highest rank has the 
value of 0, second rank has the value of 1 and so on. 

• ToNeighbors is the number of the receiver's neighbors. 
• CurrentNeighbors is the number of node's neighbors. 
• Sent has value 1 if the message has already been 

forwarded to the receiver. Otherwise it has value of 0. 
• Received has value 1 if the message has been received 

earlier, else it has value of 0. 
Hops and NeighborsOrder are scaled with the function 
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There are two hidden layers in the network. In the first 

hidden layer there are 15 nodes + bias and in the second 

hidden layer 3 nodes + bias. Tanh is used as an activation 

function in the hidden layers: 1
1

2
)(

2
−

+
= − ae

at , where a is the 

weighted sum of inputs to a neuron. Activation function in the 

output node is the threshold function 
�
�
�

≥
<

=
0,1

0,0
)(

a

a
as . 

Combining all together, the output O of the neural network 
can be calculated with the following formula: 
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where iI  is the value of input parameter i and xyw  the neural 

network weights on layer x in position y. 
Whenever the query locates a queried resource a reply 

message is sent back to the neighbor, which forwarded the 
request to the node. When all the nodes in the query path have 
forwarded the reply message backward, it is finally received 
by the query initiator. 

IV. NEURAL NETWORK OPTIMIZATION 

The weights xyw  are unknown and therefore they need to be 

adjusted to appropriate values. For doing this we use methods 
of evolutionary computing [9]. The decision, which neural 
networks are better than the others is done by counting the 
query packets traversed in the test network and found 
resources. The fitness for the neural network is defined in two 
parts. Each query j is scored for the neural network h and the 
fitness is calculated by summing up all the scores after n 

queries: �
=

=
n

j
jh scorefitness

1

. The score is defined with the 

following conditions: 
1. If packets > 300 then score = 0 

2. If foundResources = 0 then score = 
1

1
1

+
−

packets
 

3. If foundResources < availableResources / 2 and 
foundResources > 0 then score = 50 × 
foundResources – packets 

4. If foundResources ≥ availableResources / 2 then 
score = 50 × availableResources / 2 – packets 

In the equations availableResources is the maximum 
number of resource intances that can be located in the query, 
foundResources is the number of resource instances that the 
neural network was able to locate for the query, and packets is 
the number of query packets the neural network used for the 
query. The constant value 300 was set as criterion for 
determining when the neural network is considered to forward 
the query indefinitely and the query can be stopped. Another 
constant value, 50, was selected to be large enough to guide 
the training process towards neural networks that locate more 
resources than other neural networks. Now a neural network 
could spend 49 query packets more in a query to locate one 
additional resource compared to other neural network, which 
located one resource less. 

The first rule ascertains that an algorithm that eventually 
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stops is always better than algorithm that does not. The goal of 
finding half of the available resource instances was set to 
demonstrate the algorithm’s ability to balance on a 
predetermined quality of service level and not just on locating 
all resource instances or one resource instance. The second 
rule makes sure that if none of the resources are found then the 
neural network should increase the number of query packets 
sent to the network. The third rule states that if the number of 
found resources is not enough then the neural network 
develops only by locating more resources. Finally the last rule 
ensures that when half of the available resource instances are 
found from the network the fitness grows if neural network 
uses fewer query packets. 

The optimization process had an initial population of 30 
neural networks whose weights were randomly defined from 
interval [-0.2, 0.2]. Next, every neural network was tested in 
the peer-to-peer simulation environment and fitness value 
calculated. When all neural networks had been tested 15 best 
were chosen for mutation and used to breed the new generation 
of neural networks. As a result, 30 neural networks were 
available for testing the new generation. 

Mutation was based on the Gaussian random variation and 
used weighted mutation parameter to improve the adaptability 
of the evolutionary search. The random variation function was 
similar to the one used by Fogel and Chellapilla in their 
research [10] and is given as: 

       ,,...,1)),1,0(exp()()(' wjii NjNjj == τσσ  

       ,,...,1),1,0()()()(' wj
j

iii NjNjjwjw =+= σ  

where wN =  is the total number of weights and bias terms in 

the neural network, 

wN2

1=τ , )1,0(jN  is a standard 

Gaussian random variable resampled for every j, σ is the self-
adaptive parameter vector for defining the step size for finding 
the new weight, )(' jwi

 is the new weight value and index 

1851 ≤≤ i  denotes the number of neuron enumerated over all 
layers. 

V. SIMULATION ENVIRONMENT 

As a peer-to-peer simulation environment, we used Peer-to-
Peer Realm (P2PRealm) network simulator [11] that we have 
developed. The simulator can be used to simulate the behavior 
of a static peer-to-peer network and to train neural networks 
using Gaussian random variation. P2PRealm has been 
implemented using Java. 

In the test case we used power-law graphs generated using 
the Barabási-Albert model [12]. A power-law network’s 

neighbor distribution follows the power-curve 
γk

kP
1

)( = , 

where 3=γ  for Barabási-Albert graph. Therefore in power-

law networks there exist few hubs in the network that have 
many neighbors as well as many nodes that have only few 
neighbors. A power-law graph was selected because existing 

P2P networks have shown to express power-law dependencies 
[13]. The graphs tested contained 100 nodes with the highest 
degree node having 25 neighbors. Small network size was 
selected to allow visualisation of query paths in the network. 
Dynamic changes e.g., node failures were not taken into 
account to simplify the analysis. However, the approach can be 
applied in dynamic scenarios also as shown in [14]. 

The test case data was divided into three distinct data sets as 
described in [15]: a training set, a generalization set and a 
validation set. Training set is used for training the neural 
network. Generalization set is used to measure how well the 
trained neural network performs with a new data set indicating 
neural network’s ability to generalize. When performance 
starts to decrease in generalization set the training can be 
stopped, because the neural network adapts only to the training 
set if training process is continued. Validation set is used as an 
objective measure to verify how well the algorithm performs 
with arbitrarily chosen new data set and ensures that the true 
generalization ability of the neural network is being measured. 

The training set contained two power-law topologies with 
both being queried n = 50 times per generation for each neural 
network. Two topologies were used to have neural networks 
adapt to a wider range of situations than one topology would 
have provided. The generalization set consisted of two power-
law topologies with 50 queries. When the performance started 
to decrease in the generalization set the neural network having 
highest fitness was selected and, as a validation set, one 
topology with 100 queries was used to produce the final 
simulation results. 

For each topology, resource instances were allocated based 
on the number of neighbors each node has. There were 25 
different resources in the test case and the number of different 
resources in a node was the same as the number of neighbors 
the node had. This means that the largest hub had one instance 
of all resources and the lower degree nodes only some of 
these, randomly chosen from uniform distribution. The 
querying nodes and queried resources were selected also 
randomly from a uniform distribution for each query. 

As stopping criteria for the optimization process, 100,000 
generations were set. This seemed to take approximately two 

 

Fig. 2: Evolution of the best neural networks in each 
generation for training and generalization sets 



> PAPER IDENTIFICATION NUMBER: 067-04 < 
 

 

5 

weeks on our desktop PC equipped with an AMD Athlon XP 
1800 processor. The evolution of the best neural network in 
each generation is shown in Fig. 2. 

VI. SIMULATION RESULTS 

To evaluate the difference between BFS and NeuroSearch, 
we selected the best algorithm at the 85,736th generation and 
calculated the number of packets used and found resources for 
100 different queries using validation set. The 85,736th 
generation was selected because between the 80,000 and 
90,000 generations the neural networks had achieved steadily 
good results and, in particular, in the 85,736th generation, 
neural network had the best fitness. The results are presented 
in Fig. 3 and Fig. 4. 

The results of Fig. 3 show that the performance of 
NeuroSearch regarding the number of packets is nearer to BFS 
with a time-to-live value 2 (BFS-2), rather than BFS with a 
time-to-live value 3 (BFS-3). In average NeuroSearch 
consumes 47.2 packets per query whereas BFS-2 consumes 
30.0 and BFS-3 122.0 packets. The reason why there is some 
variation in the number of packets for successive BFS queries 
is that the number of delivered packets depends on which node 
is querying. If the query starts from a central node (nodes 0-
10), it will produce more packets than the same query started 
from an edge node (nodes 90-99) because the edge query has 
fewer connections where BFS can spread. In case of 
NeuroSearch, the performance is stable and does not depend 
on which node is querying. 

Fig. 4 shows how many resources the algorithms were able 
to locate. NeuroSearch’s performance in terms of located 
resources is quite similar to BFS-2 at central nodes, but better 
in the edge nodes. Compared to BFS-3 NeuroSearch’s 
performance is constantly lower, reaching the same 
performance level only at some edge nodes. The reason why 
NeuroSearch is satisfied with this level of performance is that 
it has already reached the goal of finding half of the available 
resources as defined in the fitness function and locating more 
resources is not needed. 

By calculating the ratio between the located resources and 

used query packets we can determine the efficiency of the 
algorithms. These values are shown in Table I. The results 
show that NeuroSearch’s efficiency is at the same level as 
BFS-2’s locating a new resource every fifth packet. BFS-3 
locates a new resource approximately every ninth packet. 
Efficiency is easier to keep high when locating only few 
resources because usually those can be found from the central 
nodes alone. When the number of needed resources increases, 
query has to spread more to the edges to locate the additional 
resources. Therefore the efficiency of BFS-3 decreases 
significantly. BFS-2 and NeuroSearch achieve near similar 
efficiency indicating that NeuroSearch is able to sustain a good 
efficiency even though it needs to locate more resources than 
BFS-2. 

For each query, NeuroSearch locates approximately half of 
the resources or more, which can be seen in Fig. 5. There are 
six queries in which NeuroSearch misses the target to locate 
half of the resources. This variation results from the difference 

 

Fig. 3: Number of packets used by the algorithms 

 

Fig. 4: Number of resources found by the algorithms  

 

Fig. 5: Difference of located resources to half of resources 

TABLE I 
EFFICIENCY OF THE ALGORITHMS 

Algorithm Packets Resources Efficiency 

BFS-2 3000 619 0.2063 
BFS-3 12202 1295 0.1061 
NeuroSearch 4719 975 0.2066 
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between the training set and the validation set. Nonetheless, 
the results indicate that the optimization process has found an 
algorithm that is able to locate nearly half of the resources 
from the network with high probability. 

We analyzed the behavior of the best-evolved neural 
network by tracking the path used by the queries. NeuroSearch 
seems to prefer central nodes early in the query and uses 
multiple paths for doing this. After reaching central nodes or 
one hop later the spreading is stopped. The maximum number 
of hops is 5. As verification for this the behavior of a typical 
NeuroSearch query started from an edge node is illustrated in 
Fig. 5. In the figure the query travels through the connections 
denoted with a black line starting from node 99 with question 
mark (?). Nodes marked with an exclamation mark (!) contain 
the queried resource. In total the query uses 49 packets and 
locates 11 resources. Six connections are traversed from both 
directions, which is not shown in the figure.  

VII. CONCLUSION 

In this paper, a new resource discovery algorithm has been 
proposed. NeuroSearch algorithm takes into account the 
special characteristics of its environment and can be adjusted 
to different kind of P2P networks. The algorithm’s 
performance is also stable and competitive compared to the 
BFS algorithm.  

While NeuroSearch performs well compared to BFS it is by 

no means yet designed to be optimal. For example, 
NeuroSearch does not yet include history-based inputs even 
though they would significantly improve the performance. 
Therefore, the results obtained in [3]-[8] will be considered in 
forthcoming research on NeuroSearch. There are also other 
directions that were left out of this research. First, we are 
studying what improvements to the performance would be 
gained by varying the neural network’s internal structure. 
Second, we are aiming to find out what are the scalability 
factors of NeuroSearch when the network size grows, and third 
we are developing an optimal resource discovery algorithm 
using global knowledge to be able to measure the best 
efficiency a resource discovery algorithm can achieve. Also, 
we are working on a solution to speed up the optimization 
process by parallelizing the evolutionary algorithm using 
distributed computing. This helps us to more accurately 
determine the performance maximum of NeuroSearch. 
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Fig. 5: Typical NeuroSearch resource query 
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