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Abstract 

 
This paper shows that the performance of 

peer-to-peer resource discovery algorithms is upper 
bounded by a k-Steiner minimum tree and proposes an 
algorithm locating near-optimal query paths for the 
peer-to-peer resource discovery problem. Global 
knowledge of the topology and the resources from the 
peer-to-peer network are required as an input to the 
algorithm. The algorithm provides an objective measure 
for defining how good local search algorithms are. The 
performance is evaluated in simulated peer-to-peer 
scenarios and in the measured Gnutella2 P2P network 
topology with four local search algorithms: 
breadth-first search, self-avoiding random walker, 
highest degree search and Dynamic Query Protocol. 
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k-Steiner minimum tree; optimal paths; Gnutella2; 

 
1. Introduction 

Peer-to-Peer networks (P2P) are distributed systems, 
which consist of resource sharing processes. A typical 
use case for a P2P network is the file sharing, where 
users can share the files located in their computers to 
other users in the network. The shared files can be found 
by executing a query, which locates the instances of the 
queried file and returns the information for downloading 
them. Thus the processes connected to the P2P network 
act both as a client and a server consuming and offering 
resources. 

Locating resources is an essential problem in 
peer-to-peer networks, because there is no centralized 
point or index from which the information about the 
resources could be found. Therefore developing 
efficient resource discovery algorithms is crucial. 

In the peer-to-peer resource discovery problem1, any 
node can possess resources and query resources from 
other nodes in the network. The problem consists of 

                                                        
1 Note that peer-to-peer resource discovery problem differs from the 
resource discovery problem described in [4] because only one node 
needs to discover the other nodes containing resources. Peer-to-peer 
resource discovery problem has also other names such as the 
resource-location problem [12]. 

network with nodes, links and resources. Resources are 
identified by unique IDs and nodes may contain any 
number of resources. One node knows only the 
resources it is currently hosting. Any node in the 
network can start a query, which means that some of the 
links are traversed based on the local forwarding 
decisions in the network. Whenever the query reaches a 
node which has the resource, the node replies. The goal 
is to locate a predetermined amount of resource 
instances with a given ID using as few query packets as 
possible. 

The problem can be solved using a distributed search 
algorithm, in which the querying node sends a query to 
its neighbors, who in turn forward the query further until 
the algorithm stops. Whenever a queried resource is 
located, a reply message is relayed back using the query 
path. Such an algorithm works optimally if the query is 
forwarded only to the neighbors, who either provide the 
queried resource, or can provide a minimal cost path to a 
set of nodes containing the queried resource. 

With the global information about the topology and 
the resources the problem can be formulated as a Steiner 
minimum tree problem in graphs [19], giving an upper 
bound for the performance of resource discovery 
algorithms. In the Steiner tree problem, given a graph 
containing the vertices and the edges and a terminal set 
containing the vertices, the task is to compute a spanning 
tree containing all vertices in the terminal set. Steiner 
minimum tree is the tree with minimum length of all 
such spanning trees. The terminal set contains the node, 
which starts the query and the matching resource 
instances that can be located in the network. 

The peer-to-peer resource discovery problem can be 
mapped to the Steiner minimum tree problem only if the 
number of needed resource instances is the same as the 
size of the terminal set minus one (because the query 
originator also needs to be in the set). However, it is 
often sufficient to locate for example half of the 
available resources, because the query originator may 
use, e.g. download, only some of the located resources. 
Also locating only one instance is not always a feasible 
solution, because there can be many different resources 
matching the query keyword, but only some of them 
represent the resource the query initiator is interested in. 



 

Usually locating only a portion of resource instances 
reduces the amount of query traffic significantly. This is 
beneficial especially in mobile and wireless peer-to-peer 
networks, where the use of battery power and therefore 
the amount of forwarded query packets should be 
minimized. Also, as was seen in the first version of 
Gnutella [18] the scalability of the peer-to-peer network 
weakens in wired networks when the resource discovery 
algorithm is not properly designed. 

In this paper we show that the peer-to-peer resource 
discovery problem with global knowledge is identical to 
the Steiner tree problem when all resources need to be 
found and therefore can be used to find optimal paths for 
the peer-to-peer resource discovery problem. Also, to 
enable only a part of the resources to be discovered we 
modify the original Steiner minimum tree problem to 
Rooted k-Steiner minimum tree problem, where k 
represents the number of resources that needs to be 
located and present an approximation algorithm for 
solving the problem.  

The approximation is needed because k-Steiner 
minimum tree problem is known to be NP-hard and thus 
no efficient polynomial algorithm exists for practically 
solving the Steiner minimum tree problem in large 
graphs. To demonstrate the use of the proposed 
algorithm we present an analysis of different 
peer-to-peer scenarios including the topology recently 
crawled from Gnutella2 network. As a comparison 
algorithms we use breadth-first search, self-avoiding 
random walk and highest degree search and the 
proposed minimum spanning tree k-Steiner algorithm 
(MST k-Steiner) as an approximation of optimal using 
global knowledge of network topology and resources. 
The results show that there is a significant gap between 
the performance of local search algorithms and the 
optimal solution. 
2. Related Work 

Peer-to-Peer resource discovery problem has been 
investigated extensively in the research literature 
[1,4,6,8,9,10,16,20,22,23,25]. 

Adamic et al. [1] propose High-Degree Seeking 
algorithm for finding one node in a graph by forwarding 
query to the highest degree neighbor, which has not yet 
been visited. They evaluate the performance of their 
algorithm in random graphs, power-law graphs and a 
snapshot of Gnutella P2P network. Compared to 
Random Walker, where query is forwarded to a 
randomly selected neighbor, the traffic reduction is in 
the order of magnitude. 

Lv et al. [12] evaluate the use of multiple Random 
Walkers and Expanding Ring algorithm against 
Breadth-First Search (BFS) in random graphs, 
power-law graphs and a regular two-dimensional grid 
graph as well as in a snapshot of Gnutella. Traffic 

reductions of one or two orders of magnitude are gained 
with multiple Random Walkers compared to the BFS. 

Crespo and Garcia-Molina [4] propose routing 
indices, which provide shortcuts for random walkers to 
locate the resources. As an evaluation graphs they use 
trees, trees with additional cycles and power-law graphs. 
Compared to random walkers routing indices reduce the 
traffic up to 50% and compared to BFS the traffic 
reduction is in the order of one or two magnitudes with 
uniform resource distributions. 

Yang and Garcia-Molina [25] propose Directed BFS, 
which selects the first neighbor based on heuristics and 
further uses BFS for forwarding the query. They also 
propose the use of Local Indices for replicating 
resources to a certain radius of hops from a node. 
Evaluations are conducted on a snapshot of Gnutella and 
the performance of these algorithms are compared to the 
BFS. The Directed BFS reduces traffic to 38% while 
locating significantly less resources than the BFS. Local 
Indices, however, locates similar numbers of resources 
as the BFS with 39% traffic generated by the BFS. 

Kalogeraki et al. [8] propose Modified Random 
Breadth-First Search as an improvement to the BFS 
algorithm. In their algorithm only a subset of neighbors 
are selected for forwarding. Also, they propose an 
Intelligent Search Mechanism, which stores the 
performance of past queries for each neighbor and thus 
can direct further queries to the neighbors, which are 
likely to have the queried resource. For evaluation they 
use randomly connected P2P network and reduce traffic 
to 35% compared to the BFS. 

Menascé [19] follows the ideas of Kalogeraki et al. 
and propose a modification of BFS, where only a subset 
of neighbors are randomly selected for forwarding. 
Evaluations are done in a random graph without a 
comparison algorithm. 

Tsoumakos and Roussopoulos [22] propose Adaptive 
Probabilistic Search, where the feedback from previous 
queries is used to tune probabilities for the further 
forwarding of random walkers. The algorithm is 
evaluated in random graphs and power-law graphs 
against Lv et al.’s multiple Random Walkers and 
Gnutella’s UDP extension for scalable searches [5]. 
While keeping approximately the same level of traffic, 
APS doubles the success rate of queries compared to 
multiple Random Walkers. 

Sarshar et al. [20] propose Percolation Search 
algorithm for power-law networks. The idea is to 
replicate copies of resources to sufficient number of 
nodes and thus ensure that the algorithm locates at least 
one replica of the resource. The algorithm’s 
performance is evaluated in power-law graphs and a 
snapshot of Gnutella P2P network without a comparison 
algorithm. 



 

Fisk [6] proposes Dynamic Query Protocol (DQP), 
which has now been implemented in Gnutella2 peers. 
DQP executes first a probe query to estimate how rare 
the resource is and based on the obtained results 
calculates proper TTL and number of neighbors, which 
the query will be forwarded. The query is terminated 
when 150 resource instances has been located, there are 
no connections left to query or when the theoretical 
horizon of the query has hit the limit of 200,000 peers. 

Vapa et al. [23] propose NeuroSearch, which is a 
neural network based resource discovery algorithm. In 
NeuroSearch a neural network is given a set of heuristics 
and by calculating the output of the neural network the 
algorithm can decide which of the neighbor nodes will 
receive the query. The evaluations are done in small 
power-law graphs and the traffic is reduced 
approximately to 80% from the BFS. 

The main theme of all the papers reviewed in this 
section has been to introduce new algorithm(s) and to 
compare their performance to other algorithms of a 
similar type. However, the level of performance is not 
properly identified if the optimal performance is not 
measured in the simulations. The algorithm proposed 
later in this paper aims to overcome this problem. 
3. Steiner Minimum Tree Problem 

Let G = (V,E) be an undirected graph, where V is a set 
of vertices and E is a set of edges having edge costs. 
Given a terminal set VR ⊆ , a Steiner minimum tree 

(SMT) is a tree GT ⊆  such that T contains all vertices 
of R and the length w(T) is minimum among all Steiner 
trees. w(T) is defined as a sum of all edge costs Ee ∈  
contained in T. 

Compared to a minimum spanning tree, which 
contains all vertices of a graph, SMT spans only a subset 
of vertices and thus if the cardinality of the terminal set 
|R| = |V| these problems are equivalent. Also, if |R| = 2, 
SMT reduces to solving a shortest-path problem. 

In SMT the vertices are divided into two sets: 
terminal vertices and non-terminal vertices. Terminal 
vertices belong to a set, which has to be included in the 
solution, whereas non-terminal vertices can shorten the 
length of the solution. 

SMT is known to be NP-complete problem [9]. Being 
in complexity class NP means that there exists a 
polynomial time algorithm to check whether the given 
solution is a correct Steiner tree and whether the length 
of a given solution is less than a given bound B, but there 
is no polynomial algorithm (unless P=NP) that would 
find such a Steiner tree. Therefore exact solving of the 
problem is not practical with large graphs. Also, when a 
problem is classified as NP-complete it means that the 
problem is the hardest among all problems contained in 
NP. More information about the NP-completeness of the 
Steiner tree problem can be found in [19]. 

Because SMT is NP-complete, approximation needs 
to be used. An approximated solution is not guaranteed 
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Figure 1. Execution of MST k-Steiner Algorithm with k=4 



 

to locate the Steiner minimum tree, but it can give 
guarantees that the length of a located solution is within 
certain range from the optimal solution. 
4. Peer-to-Peer Resource Discovery As 

Steiner Tree Problem 
As was described earlier the peer-to-peer resource 

discovery problem does not map to the Steiner tree 
problem if only part of the resources needs to be found. 
Therefore we introduce k-Steiner Minimum Tree 
problem as described in [3] with an addition of a root 
vertex to the solution set. In Rooted k-Steiner Minimum 
Tree problem (Rooted k-SMT) it suffices to select only k 
terminal vertices from R to be included in the Steiner 
minimum tree starting from the root vertex r. Also we 
propose an approximation algorithm for solving the 
Rooted k-SMT problem. 
4.1. Rooted k-Steiner Minimum Tree 
Problem: Rooted k-Steiner Minimum Tree 

Given: A connected graph G = (V,E), a terminal set 
VR ⊆ , a root vertex Rr ∈  and 

||2 Rk ≤≤  
Find: A Steiner tree T for R in G rooted to vertex r 

and containing k terminal vertices, such that 
w(T) = min {|w(T’)| | T’ is a Steiner tree for 
k vertices in R} 

The Rooted k-SMT becomes equivalent to the SMT 
by selecting k=|R| and as a root any vertex in R. The 
SMT thus reduces to a special case of the Rooted k-SMT 
and therefore Rooted k-SMT for all k is at least as hard 
as SMT. When applied to the resource discovery 
problem the terminal set R is formed of query originator 
as root vertex and |R|-1 resource instances. 
4.2. Approximation of Rooted k-Steiner 

Minimum Tree Problem With Minimum 
Spanning Tree 

A well-known method for approximating the SMT is 
the use of a minimum spanning tree (MST) [19,24]. The 
MST k-Steiner Minimum Tree algorithm (MST 
k-Steiner) proposed here uses the same principles as 
MST-approximation algorithm to locate a solution for 
Rooted k-SMT.  

MST k-Steiner starts by computing Voronoi regions 
of each terminal node. Voronoi region of a terminal 
node contains all the nodes which are closer to that 
terminal node than to other terminal node. Voronoi 
regions can be computed by adding one node in the 
graph G and connecting this node to all terminal nodes 
of R with edge length 0. Let GV denote this graph. Then 
by executing a minimum spanning tree on GV the 
Voronoi regions are obtained. This also gives the 
distance of each non-terminal node to its closest 
terminal node. The technique used here was introduced 
by Mehlhorn in [15]. 

Next, the Voronoi regions are used to compute the 
shortest distance graph GR of vertices in R. Let l(u,v) 
denote the edge cost of the edge between nodes u and v. 
Let l(u) denote the distance of node u from the closest 
terminal node. Let t(u) denote the closest terminal node 
of node u. Shortest distance graph GR is obtained by 
going through each edge ),( vu , Evu ∈, , vu ≠  and 
computing the two triplets (t(u), t(v), l(u)+l(u,v)+l(v)) 
and (t(v), t(u), l(u)+l(u,v)+l(v)). These triplets are 
collected in a list and only those where t(u) ≠ t(v) and 
l(u)+l(u,v)+l(v) is the shortest are kept in the list. This 
list is used to create the graph GR by associating two 
terminal nodes u and v if they have a corresponding 
triplet in the list and setting the edge cost to be the third 
value of the triplet.  

Then a k-minimum spanning tree approximation TR 
containing k vertices is located greedily from GR by 
selecting the closest node to the spanning tree starting 
from the vertex r and decomposed back to the original 
graph by replacing the edges with their shortest paths. 
Algorithm: MST k-Steiner Minimum Tree 

Input: A connected graph G = (V,E), a terminal 
set VR ⊆ , a root vertex Rr ∈  and 

||2 Rk ≤≤  
Output: A Steiner tree T for R in G rooted to the 

vertex r containing k terminal vertices. 

(1) Add one node to the graph G and connect it to all 
terminal nodes contained in R with an edge 
having cost 0. The result is denoted as graph GV. 

(2) Replace GV with the minimum spanning tree of 
GV. 

(3) Compute the shortest path between two terminal 
nodes by iterating all edges of E in G and 
constructing the corresponding triplets. 
Transform the resulting triplets to graph GR. 

(4) Compute a k-minimum spanning tree 
approximation TR from GR rooted to the vertex r 
and containing k vertices of R. 

(5) Transform TR into subtree T of G by replacing 
each edge of TR by the corresponding shortest 
path. 

An example execution of the MST k-Steiner 
algorithm when k=4 and |R|=5 is shown in the Figure 1. 
In the figure a graph G is given with the terminal set 

{ }51 ≤≤= irR i  (denoted as  including root vertex r1, 
which is denoted as ) and the non-terminal nodes 

31, ≤≤ imi  (denoted as ). Integers associated to the 
edges represent the edge costs. 
5. Time Complexity 

MST k-Steiner executes MST algorithm once in step 
(2) and once in step (4) stopping when k nodes have 
been reached. The transformation of the graph in step (3) 
using bucket sort [19] requires at maximum |V|log|V|+|E| 



 

steps, where |V| is the number of vertices in the input 
graph G and |E| is the number of edges in input graph G. 
Therefore the time complexity required for the 
algorithm is: 

MST + MSTk + |V|log|V| + |E|,        (5.1) 
where MST denotes the time required for executing the 
Minimum Spanning Tree and MSTk denotes the time 
required for executing the Minimum Spanning Tree for 
k nodes. Certainly MSTk ≤ MST and |V| ≤ |E|-1 ≤ |E|, 
bounding the time complexity to: 

2*MST+|E|log|E|+|E|.                       (5.2) 
Minimum Spanning Tree can be implemented for 
example using the Kruskal’s algorithm [24] having 
O(|E|log|E|) time complexity. Therefore MST k-Steiner 
algorithm’s time complexity is O(|E|log|E|), which 
allows the algorithm to be used also in large graphs. 
6. Approximation Ratio 

Approximation ratio of an algorithm is computed as a 
ratio between the worst case performance and the 
optimal performance. For k = 2 the approximation ratio 
is 1, because the shortest path to the nearest resource is 
always selected. Also when k = |R|, MST k-Steiner 
reduces to a well-known MST-approximation algorithm 
[19,24] for Steiner Minimum Tree problem having 
approximation ratio 2. So, it still remains to determine 
what the approximation ratio is when 2 < k < |R|. 

A difficult case for MST k-Steiner is a graph shown 
in Figure 2. In the scenario, the root node is located 
within S distance from 1

2
−

R  terminal nodes and within 

S + ε distance from the other half of terminal nodes. The 
difference between these distances is that on the left 
hand side discovering each terminal node requires 
travelling S distance and on the right hand side 
discovering the first terminal node requires travelling S 
+ ε distance, but then the other terminal nodes can be 
discovered with ε distance. 

Without a loss of generality the analysis can be 
restricted to cases where |R| is even. Now the 
approximation ratio α between the discovered path and 
the optimal path can be calculated for 
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Considering ε ≈ 0 the approximation ratio becomes: 

2
R

=α        (6.2) 

This implies that when the size of the terminal set 
grows and the number of discovered terminals k is close 
to 

2
R  the approximation ratio can become large. Still, 

the approximation ratio seems to be bounded to 
2
R , 

because adding terminal node on the left hand side and 
removing one terminal node from the right hand side 
makes the optimal path longer while keeping the 
discovered path almost the same (decreased by ε). In 
contrast by adding a terminal node on the right hand side 
and removing one terminal node from the left hand side 
makes the discovered path shorter while keeping the 
optimal path the same. Also decreasing k from 

2
R  will 

decrease the length of the discovered path faster than the 
optimal path thus giving a lower approximation ratio. 
Increasing k will lengthen the optimal path faster than 
the discovered path resulting in a lower approximation 
ratio than 

2
R . 

As a summary, the approximation ratio of the 
algorithm depends on the number of available resources 
and can be no less than 

2
R . It is still left for future work 

to show that the ratio could not be even worse. There are 
however approximation algorithms for k-Steiner 
Minimum Tree, which achieve constant factor 
approximation ratios [3]. They rely on integer 
programming and by relaxing the constraints to a linear 
program sustain approximation ratio guarantees. 
7. Simulations 

In this section we present an analysis of five 
algorithms: Breadth-First Search (BFS) [13], 
Self-avoiding Random Walk (RWSA), Highest Degree 
Search (HDS) [1,10], Dynamic Query Protocol (DQP) 
[6] and MST k-Steiner Minimum Tree. The simulations 
were conducted in P2PRealm network simulator. 
7.1. Peer-to-Peer Network Scenarios 

 As simulation scenarios we used power-law graphs, 
normal distributed random graphs and a recently 
measured topology of Gnutella2 P2P network [21] with 
an edge cost 1 for all edges. Power-law graphs were 
generated using Barabási-Albert model [2]. In 
power-law network few hub nodes have many neighbors 
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Figure 2. A graph where MST k-Steiner makes a 

large approximation error 



 

and many nodes have only few neighbors. Gnutella2 
topology was obtained by extracting the largest 
connected component from the topology data of 
02/02/05 presented in [21] and removing those nodes 
whose edges were not referenced by other nodes. Finally 
those edges whose one end point was missing were 
removed. 

Resource instances were allocated for power-law and 
random graphs based on the number of neighbors each 
node had such that the number of different resource 
instances in a node was the same as the number of 
neighbors the node had. This means that in the 
power-law graphs the hubs were more likely to contain 
the queried resource. Resources were allocated to nodes 
by randomly sampling from a uniform distribution. The 
queried resources and the querying nodes were selected 
also randomly from a uniform distribution for each 
query. 

In Gnutella2 topology the resources were allocated 
based on the measured resource distributions of  
Gnutella network in September 2003 [14]. The number 
of different resources was selected to be 10, so the 
topology files could be kept small enough, but the 
number of resource instances for each resource was 
sampled from the resource distribution of [14] which 
produced 43216 different resources instances. These 
resource instances were allocated randomly to nodes 
following the measured distribution of shared files in 
nodes [14] such that one node could not have multiple 
instances of the same resource. Now when 100 queries 
were executed each resource was queried multiple 
times, but from a different location, which was 
randomly selected. The queried resource was selected 
according to the peer keyword distribution of [14]. 

Table 1 illustrates the characteristics of each scenario 
used in the simulations. 

7.2. Results 
The tests were conducted by varying the target 

amount of resource instances that was needed to be 
found by the algorithms. The target percentage of the 
discovered resource instances determines the amount 
how many resource instances of a certain resource needs 
to be discovered out of all resource instances of that 
resource and represents the k parameter of the Rooted 
k-SMT problem. The measured variables were the 

average number of query packets used in a query as 
shown in figures 3, 4 and 5 and the average number of 
maximum hops as shown in figures 6, 7 and 8. 

As can be seen from Figure 3 in power-law graphs 
MST k-Steiner algorithm produces query paths between 
one and two orders of magnitude shorter than local 
search algorithms. Also, the approximation error of 
MST k-Steiner in the scenario is at most 2=α , because 
the theoretical optimum is k-1 query packets when each 
node can have only one instance of the queried resource. 
k-1 represents a situation that each forwarded query 
packet would locate one new resource instance and the 
query originator does not have the queried resource. 

The performance of HDS is close to the paths of MST 
k-Steiner algorithm when only one or two instances of 
resources needs to be located (resource percentage < 
3%). This is a bit surprising even though the scenario is 
designed directly for HDS type of algorithms. The 
resources are discovered more probably in the center of 
the network and as noted in [1] HDS travels those nodes 
early in the search process. However, when more 
resources needs to be discovered HDS travels multiple 
times to the central nodes and sometimes randomly 
forward the query packet decreasing the performance. 
Compared to RWSA and BFS, HDS performs 
significantly better when half of the available resource 
instances needs to be located and after that RWSA 
becomes a better algorithm. BFS in turn is at the same 
level with RWSA when less than 40% of resources 
needs to be located having TTL values between 1 and 4. 
With TTL values 5-7 BFS cannot keep up with RWSA. 
DQP is significantly less performing than BFS when 
small amount of resource instances needs to be located, 
because DQP requires always executing a two hop query 
first. DQP however reaches the same level with BFS 
when 40% or more resources needs to be located. 
Because of maximum TTL restrictions DQP cannot 
locate more than 60% of available resource instances. 

In normal distributed graphs, as shown in Figure 4, 
MST k-Steiner retains its characteristics having largest 
approximation error at most 4=α . Normal distributed 
graphs have larger diameter than power law distributed 
graphs and therefore estimating the optimal performance 
with k is too pessimistic. This argument is supported by 
the fact, that when 100% of resource instances needs to 
be discovered, the approximation ratio is at maximum 

2=α  as discussed in Section 6. It is therefore not clear, 
whether as short paths as k would exist in the normal 
distributed graph and presumably the real 
approximation error is at a similar range as in power-law 
graphs. Thus we conclude that the approximation ratio 
derived in section 6 highly overestimates the optimal 
performance in power-law and normal distributed P2P 
scenarios. 

Table 1. Simulation Scenarios
Scenario PL10000 N10000 Gnutella2 
Distribution Power-Law Normal - 
Nodes 10000 10000 74297 
Edges 19997 19997 609036 
Largest hub 161 11 360 
Resources 1000 1000 10 
Res. instances 39994 39994 43216 
Queries 100 100 100 
Diameter 8 10 12 



 

The difference between local search algorithms and 
MST k-Steiner paths is again in the order of one or two 
magnitudes. In contrast to power-law graphs, the local 
search algorithms in normal distributed graphs have 
similar performance when less than half of available 
resource instances needs to be located. After that RWSA 
and HDS outperform BFS. Random graph does not 
contain hub nodes and therefore HDS does not benefit 
from its ability to travel to high degree nodes. Basically, 
HDS appears as a self-avoiding random walker, because 
all the neighbors are almost equally connected. The 
large diameter of normal distributed graph restricts DQP 

to locate only 7% of resource instances with time-to-live 
4. 

In Gnutella2 topology, as shown in Figure 5, MST 
k-Steiner does not seem to make any approximation 
error suggesting that Gnutella2 topology is highly 
connected and thus allowing each hop of a query to 
locate a new resource instance. The difference between 
MST k-Steiner paths and local search algorithms is in 
the order of a magnitude. HDS and RWSA perform 
equally well and BFS can keep up with them to 40% of 
resource instances. Then BFS departs to the level of 
DQP, which can locate at maximum 60% of resource 
instances. 
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Figure 3. Query packets in PL10000 
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Figure 4. Query packets in N10000 
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Figure 5. Query packets in Gnutella2 
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Figure 6. Maximum number of hops in PL10000 
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Figure 7. Maximum number of hops in N10000 
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Figure 8. Maximum number of hops in Gnutella2 



 

The average of maximum hops for MST k-Steiner, 
BFS and DQP is plotted in Figures 6, 7 and 8. HDS and 
RWSA are omitted as their number of hops is shown in 
Figures 3, 4 and 5. Because HDS and RWSA forward to 
only one direction at a time their maximum hops are in 
different scale than what MST k-Steiner, BFS and DQP 
are using. Therefore if low latency in the network is 
critical, HDS and RWSA may not be suitable as local 
search algorithms. From the Figures 6 and 7, it can be 
seen that BFS and DQP require in N10000 two or three 
hops more than in PL10000 to locate the same amount of 
resource instances. BFS locates the shortest paths to 
resources and therefore has a small latency. However, 
MST k-Steiner does not seem to be using these paths. 
Reason for this is that the shortest paths do not 
necessarily contain resources along the path and 
therefore collecting some resources using a longer route 
may lead to a path which is more efficient. The latency 
in power-law graphs also stays comparable to BFS, but 
in normal distributed graphs the length of query paths 
grows significantly. This is, however, in completely 
different scale than the hops used by HDS and RWSA. 

8. Conclusion 
The Rooted k-Steiner Minimum Tree problem 

connects the resource discovery problem to a solid 
foundation of graph theory providing means to calculate 
near-optimal query paths in a graph. The MST k-Steiner 
algorithm computes an approximation of the shortest 
tree between the querying node and the nodes having the 
queried resource instances and thus is an upper bound 
for the performance of local search algorithms. The 
algorithm can be used in cases, where nodes contain 
only one instance of queried resource and the problem 
has to be further extended if multiple resource instances 
in a node is to be supported. In overall, the results 
presented here show that local search algorithms 
commonly used in P2P networks are far from optimal 
paths. 

Based on the findings in Gnutella2 topology, DQP 
has slightly lower performance than BFS, but because of 
automatic adaptation of time-to-live parameter it can be 
feasibly used in current P2P networks. HDS and RWSA 
suffer from implementation problems because to avoid 
already visited nodes they need to keep record of visited 
nodes and therefore the size of the query packet grows in 
large graphs limiting their use. 

What makes the resource discovery problem hard in 
P2P networks is that only local information is available. 
It would be interesting to know how close to the 
optimum can algorithms get using local knowledge. A 
record of the global network topology is used in Open 
Shortest Path First [17] IP routing protocol and 
Dijkstra’s algorithm for computing the shortest paths 
suggesting possibilities that MST k-Steiner tree 

algorithm could be adapted to distributed P2P networks. 
In this case, information about the resources needs to be 
at least partially cached in the nodes. This, however, 
needs further research. 
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