

Optimal Resource Discovery Paths of Gnutella2

Mikko Vapa, Annemari Auvinen, Yevgeniy Ivanchenko, Niko Kotilainen and Jarkko Vuori
Department of Mathematical Information Technology

P.O.Box 35 (Agora), 40014 University of Jyväskylä, Finland
firstname.lastname@jyu.fi

Abstract

This paper shows that the performance of

peer-to-peer resource discovery algorithms is upper
bounded by a k-Steiner minimum tree and proposes an
algorithm locating near-optimal query paths for the
peer-to-peer resource discovery problem. Global
knowledge of the topology and the resources from the
peer-to-peer network are required as an input to the
algorithm. The algorithm provides an objective measure
for defining how good local search algorithms are. The
performance is evaluated in simulated peer-to-peer
scenarios and in the measured Gnutella2 P2P network
topology with four local search algorithms:
breadth-first search, self-avoiding random walker,
highest degree search and Dynamic Query Protocol.

Keywords - peer-to-peer; P2P; resource discovery;
k-Steiner minimum tree; optimal paths; Gnutella2;

1. Introduction

Peer-to-Peer networks (P2P) are distributed systems,
which consist of resource sharing processes. A typical
use case for a P2P network is the file sharing, where
users can share the files located in their computers to
other users in the network. The shared files can be found
by executing a query, which locates the instances of the
queried file and returns the information for downloading
them. Thus the processes connected to the P2P network
act both as a client and a server consuming and offering
resources.

Locating resources is an essential problem in
peer-to-peer networks, because there is no centralized
point or index from which the information about the
resources could be found. Therefore developing
efficient resource discovery algorithms is crucial.

In the peer-to-peer resource discovery problem1, any
node can possess resources and query resources from
other nodes in the network. The problem consists of

1 Note that peer-to-peer resource discovery problem differs from the
resource discovery problem described in [4] because only one node
needs to discover the other nodes containing resources. Peer-to-peer
resource discovery problem has also other names such as the
resource-location problem [12].

network with nodes, links and resources. Resources are
identified by unique IDs and nodes may contain any
number of resources. One node knows only the
resources it is currently hosting. Any node in the
network can start a query, which means that some of the
links are traversed based on the local forwarding
decisions in the network. Whenever the query reaches a
node which has the resource, the node replies. The goal
is to locate a predetermined amount of resource
instances with a given ID using as few query packets as
possible.

The problem can be solved using a distributed search
algorithm, in which the querying node sends a query to
its neighbors, who in turn forward the query further until
the algorithm stops. Whenever a queried resource is
located, a reply message is relayed back using the query
path. Such an algorithm works optimally if the query is
forwarded only to the neighbors, who either provide the
queried resource, or can provide a minimal cost path to a
set of nodes containing the queried resource.

With the global information about the topology and
the resources the problem can be formulated as a Steiner
minimum tree problem in graphs [19], giving an upper
bound for the performance of resource discovery
algorithms. In the Steiner tree problem, given a graph
containing the vertices and the edges and a terminal set
containing the vertices, the task is to compute a spanning
tree containing all vertices in the terminal set. Steiner
minimum tree is the tree with minimum length of all
such spanning trees. The terminal set contains the node,
which starts the query and the matching resource
instances that can be located in the network.

The peer-to-peer resource discovery problem can be
mapped to the Steiner minimum tree problem only if the
number of needed resource instances is the same as the
size of the terminal set minus one (because the query
originator also needs to be in the set). However, it is
often sufficient to locate for example half of the
available resources, because the query originator may
use, e.g. download, only some of the located resources.
Also locating only one instance is not always a feasible
solution, because there can be many different resources
matching the query keyword, but only some of them
represent the resource the query initiator is interested in.

Usually locating only a portion of resource instances
reduces the amount of query traffic significantly. This is
beneficial especially in mobile and wireless peer-to-peer
networks, where the use of battery power and therefore
the amount of forwarded query packets should be
minimized. Also, as was seen in the first version of
Gnutella [18] the scalability of the peer-to-peer network
weakens in wired networks when the resource discovery
algorithm is not properly designed.

In this paper we show that the peer-to-peer resource
discovery problem with global knowledge is identical to
the Steiner tree problem when all resources need to be
found and therefore can be used to find optimal paths for
the peer-to-peer resource discovery problem. Also, to
enable only a part of the resources to be discovered we
modify the original Steiner minimum tree problem to
Rooted k-Steiner minimum tree problem, where k
represents the number of resources that needs to be
located and present an approximation algorithm for
solving the problem.

The approximation is needed because k-Steiner
minimum tree problem is known to be NP-hard and thus
no efficient polynomial algorithm exists for practically
solving the Steiner minimum tree problem in large
graphs. To demonstrate the use of the proposed
algorithm we present an analysis of different
peer-to-peer scenarios including the topology recently
crawled from Gnutella2 network. As a comparison
algorithms we use breadth-first search, self-avoiding
random walk and highest degree search and the
proposed minimum spanning tree k-Steiner algorithm
(MST k-Steiner) as an approximation of optimal using
global knowledge of network topology and resources.
The results show that there is a significant gap between
the performance of local search algorithms and the
optimal solution.
2. Related Work

Peer-to-Peer resource discovery problem has been
investigated extensively in the research literature
[1,4,6,8,9,10,16,20,22,23,25].

Adamic et al. [1] propose High-Degree Seeking
algorithm for finding one node in a graph by forwarding
query to the highest degree neighbor, which has not yet
been visited. They evaluate the performance of their
algorithm in random graphs, power-law graphs and a
snapshot of Gnutella P2P network. Compared to
Random Walker, where query is forwarded to a
randomly selected neighbor, the traffic reduction is in
the order of magnitude.

Lv et al. [12] evaluate the use of multiple Random
Walkers and Expanding Ring algorithm against
Breadth-First Search (BFS) in random graphs,
power-law graphs and a regular two-dimensional grid
graph as well as in a snapshot of Gnutella. Traffic

reductions of one or two orders of magnitude are gained
with multiple Random Walkers compared to the BFS.

Crespo and Garcia-Molina [4] propose routing
indices, which provide shortcuts for random walkers to
locate the resources. As an evaluation graphs they use
trees, trees with additional cycles and power-law graphs.
Compared to random walkers routing indices reduce the
traffic up to 50% and compared to BFS the traffic
reduction is in the order of one or two magnitudes with
uniform resource distributions.

Yang and Garcia-Molina [25] propose Directed BFS,
which selects the first neighbor based on heuristics and
further uses BFS for forwarding the query. They also
propose the use of Local Indices for replicating
resources to a certain radius of hops from a node.
Evaluations are conducted on a snapshot of Gnutella and
the performance of these algorithms are compared to the
BFS. The Directed BFS reduces traffic to 38% while
locating significantly less resources than the BFS. Local
Indices, however, locates similar numbers of resources
as the BFS with 39% traffic generated by the BFS.

Kalogeraki et al. [8] propose Modified Random
Breadth-First Search as an improvement to the BFS
algorithm. In their algorithm only a subset of neighbors
are selected for forwarding. Also, they propose an
Intelligent Search Mechanism, which stores the
performance of past queries for each neighbor and thus
can direct further queries to the neighbors, which are
likely to have the queried resource. For evaluation they
use randomly connected P2P network and reduce traffic
to 35% compared to the BFS.

Menascé [19] follows the ideas of Kalogeraki et al.
and propose a modification of BFS, where only a subset
of neighbors are randomly selected for forwarding.
Evaluations are done in a random graph without a
comparison algorithm.

Tsoumakos and Roussopoulos [22] propose Adaptive
Probabilistic Search, where the feedback from previous
queries is used to tune probabilities for the further
forwarding of random walkers. The algorithm is
evaluated in random graphs and power-law graphs
against Lv et al.’s multiple Random Walkers and
Gnutella’s UDP extension for scalable searches [5].
While keeping approximately the same level of traffic,
APS doubles the success rate of queries compared to
multiple Random Walkers.

Sarshar et al. [20] propose Percolation Search
algorithm for power-law networks. The idea is to
replicate copies of resources to sufficient number of
nodes and thus ensure that the algorithm locates at least
one replica of the resource. The algorithm’s
performance is evaluated in power-law graphs and a
snapshot of Gnutella P2P network without a comparison
algorithm.

Fisk [6] proposes Dynamic Query Protocol (DQP),
which has now been implemented in Gnutella2 peers.
DQP executes first a probe query to estimate how rare
the resource is and based on the obtained results
calculates proper TTL and number of neighbors, which
the query will be forwarded. The query is terminated
when 150 resource instances has been located, there are
no connections left to query or when the theoretical
horizon of the query has hit the limit of 200,000 peers.

Vapa et al. [23] propose NeuroSearch, which is a
neural network based resource discovery algorithm. In
NeuroSearch a neural network is given a set of heuristics
and by calculating the output of the neural network the
algorithm can decide which of the neighbor nodes will
receive the query. The evaluations are done in small
power-law graphs and the traffic is reduced
approximately to 80% from the BFS.

The main theme of all the papers reviewed in this
section has been to introduce new algorithm(s) and to
compare their performance to other algorithms of a
similar type. However, the level of performance is not
properly identified if the optimal performance is not
measured in the simulations. The algorithm proposed
later in this paper aims to overcome this problem.
3. Steiner Minimum Tree Problem

Let G = (V,E) be an undirected graph, where V is a set
of vertices and E is a set of edges having edge costs.
Given a terminal set VR ⊆ , a Steiner minimum tree

(SMT) is a tree GT ⊆ such that T contains all vertices
of R and the length w(T) is minimum among all Steiner
trees. w(T) is defined as a sum of all edge costs Ee ∈
contained in T.

Compared to a minimum spanning tree, which
contains all vertices of a graph, SMT spans only a subset
of vertices and thus if the cardinality of the terminal set
|R| = |V| these problems are equivalent. Also, if |R| = 2,
SMT reduces to solving a shortest-path problem.

In SMT the vertices are divided into two sets:
terminal vertices and non-terminal vertices. Terminal
vertices belong to a set, which has to be included in the
solution, whereas non-terminal vertices can shorten the
length of the solution.

SMT is known to be NP-complete problem [9]. Being
in complexity class NP means that there exists a
polynomial time algorithm to check whether the given
solution is a correct Steiner tree and whether the length
of a given solution is less than a given bound B, but there
is no polynomial algorithm (unless P=NP) that would
find such a Steiner tree. Therefore exact solving of the
problem is not practical with large graphs. Also, when a
problem is classified as NP-complete it means that the
problem is the hardest among all problems contained in
NP. More information about the NP-completeness of the
Steiner tree problem can be found in [19].

Because SMT is NP-complete, approximation needs
to be used. An approximated solution is not guaranteed

1

m2

r1 r2

r5

r4r3

m1

7

13

1

6

1

31

1
m3

r4r3

r1 r2

r5

1

m2

m1

7

13

1

6

1

31

1
m3

0

0

0
0

0
r4r3

r1 r2

r5
m2

m1

1
1

1
m3

0

0

0
0

0

Graph G Graph GV after step (1) Graph GV after step (2)

r5

r1 r2

r4r3

7

15

1

6

5

r5

r1

r4r3

5

1
5

r1

r5

r4r3

m1
3

1

31

1
m3

Graph GR after step (3) Tree TR after step (4) Tree T after step (5)

Figure 1. Execution of MST k-Steiner Algorithm with k=4

to locate the Steiner minimum tree, but it can give
guarantees that the length of a located solution is within
certain range from the optimal solution.
4. Peer-to-Peer Resource Discovery As

Steiner Tree Problem
As was described earlier the peer-to-peer resource

discovery problem does not map to the Steiner tree
problem if only part of the resources needs to be found.
Therefore we introduce k-Steiner Minimum Tree
problem as described in [3] with an addition of a root
vertex to the solution set. In Rooted k-Steiner Minimum
Tree problem (Rooted k-SMT) it suffices to select only k
terminal vertices from R to be included in the Steiner
minimum tree starting from the root vertex r. Also we
propose an approximation algorithm for solving the
Rooted k-SMT problem.
4.1. Rooted k-Steiner Minimum Tree
Problem: Rooted k-Steiner Minimum Tree

Given: A connected graph G = (V,E), a terminal set
VR ⊆ , a root vertex Rr ∈ and

||2 Rk ≤≤
Find: A Steiner tree T for R in G rooted to vertex r

and containing k terminal vertices, such that
w(T) = min {|w(T’)| | T’ is a Steiner tree for
k vertices in R}

The Rooted k-SMT becomes equivalent to the SMT
by selecting k=|R| and as a root any vertex in R. The
SMT thus reduces to a special case of the Rooted k-SMT
and therefore Rooted k-SMT for all k is at least as hard
as SMT. When applied to the resource discovery
problem the terminal set R is formed of query originator
as root vertex and |R|-1 resource instances.
4.2. Approximation of Rooted k-Steiner

Minimum Tree Problem With Minimum
Spanning Tree

A well-known method for approximating the SMT is
the use of a minimum spanning tree (MST) [19,24]. The
MST k-Steiner Minimum Tree algorithm (MST
k-Steiner) proposed here uses the same principles as
MST-approximation algorithm to locate a solution for
Rooted k-SMT.

MST k-Steiner starts by computing Voronoi regions
of each terminal node. Voronoi region of a terminal
node contains all the nodes which are closer to that
terminal node than to other terminal node. Voronoi
regions can be computed by adding one node in the
graph G and connecting this node to all terminal nodes
of R with edge length 0. Let GV denote this graph. Then
by executing a minimum spanning tree on GV the
Voronoi regions are obtained. This also gives the
distance of each non-terminal node to its closest
terminal node. The technique used here was introduced
by Mehlhorn in [15].

Next, the Voronoi regions are used to compute the
shortest distance graph GR of vertices in R. Let l(u,v)
denote the edge cost of the edge between nodes u and v.
Let l(u) denote the distance of node u from the closest
terminal node. Let t(u) denote the closest terminal node
of node u. Shortest distance graph GR is obtained by
going through each edge),(vu , Evu ∈, , vu ≠ and
computing the two triplets (t(u), t(v), l(u)+l(u,v)+l(v))
and (t(v), t(u), l(u)+l(u,v)+l(v)). These triplets are
collected in a list and only those where t(u) ≠ t(v) and
l(u)+l(u,v)+l(v) is the shortest are kept in the list. This
list is used to create the graph GR by associating two
terminal nodes u and v if they have a corresponding
triplet in the list and setting the edge cost to be the third
value of the triplet.

Then a k-minimum spanning tree approximation TR
containing k vertices is located greedily from GR by
selecting the closest node to the spanning tree starting
from the vertex r and decomposed back to the original
graph by replacing the edges with their shortest paths.
Algorithm: MST k-Steiner Minimum Tree

Input: A connected graph G = (V,E), a terminal
set VR ⊆ , a root vertex Rr ∈ and

||2 Rk ≤≤
Output: A Steiner tree T for R in G rooted to the

vertex r containing k terminal vertices.

(1) Add one node to the graph G and connect it to all
terminal nodes contained in R with an edge
having cost 0. The result is denoted as graph GV.

(2) Replace GV with the minimum spanning tree of
GV.

(3) Compute the shortest path between two terminal
nodes by iterating all edges of E in G and
constructing the corresponding triplets.
Transform the resulting triplets to graph GR.

(4) Compute a k-minimum spanning tree
approximation TR from GR rooted to the vertex r
and containing k vertices of R.

(5) Transform TR into subtree T of G by replacing
each edge of TR by the corresponding shortest
path.

An example execution of the MST k-Steiner
algorithm when k=4 and |R|=5 is shown in the Figure 1.
In the figure a graph G is given with the terminal set

{ }51 ≤≤= irR i (denoted as including root vertex r1,
which is denoted as) and the non-terminal nodes

31, ≤≤ imi (denoted as). Integers associated to the
edges represent the edge costs.
5. Time Complexity

MST k-Steiner executes MST algorithm once in step
(2) and once in step (4) stopping when k nodes have
been reached. The transformation of the graph in step (3)
using bucket sort [19] requires at maximum |V|log|V|+|E|

steps, where |V| is the number of vertices in the input
graph G and |E| is the number of edges in input graph G.
Therefore the time complexity required for the
algorithm is:

MST + MSTk + |V|log|V| + |E|, (5.1)
where MST denotes the time required for executing the
Minimum Spanning Tree and MSTk denotes the time
required for executing the Minimum Spanning Tree for
k nodes. Certainly MSTk ≤ MST and |V| ≤ |E|-1 ≤ |E|,
bounding the time complexity to:

2*MST+|E|log|E|+|E|. (5.2)
Minimum Spanning Tree can be implemented for
example using the Kruskal’s algorithm [24] having
O(|E|log|E|) time complexity. Therefore MST k-Steiner
algorithm’s time complexity is O(|E|log|E|), which
allows the algorithm to be used also in large graphs.
6. Approximation Ratio

Approximation ratio of an algorithm is computed as a
ratio between the worst case performance and the
optimal performance. For k = 2 the approximation ratio
is 1, because the shortest path to the nearest resource is
always selected. Also when k = |R|, MST k-Steiner
reduces to a well-known MST-approximation algorithm
[19,24] for Steiner Minimum Tree problem having
approximation ratio 2. So, it still remains to determine
what the approximation ratio is when 2 < k < |R|.

A difficult case for MST k-Steiner is a graph shown
in Figure 2. In the scenario, the root node is located
within S distance from 1

2
−

R terminal nodes and within

S + ε distance from the other half of terminal nodes. The
difference between these distances is that on the left
hand side discovering each terminal node requires
travelling S distance and on the right hand side
discovering the first terminal node requires travelling S
+ ε distance, but then the other terminal nodes can be
discovered with ε distance.

Without a loss of generality the analysis can be
restricted to cases where |R| is even. Now the
approximation ratio α between the discovered path and
the optimal path can be calculated for

2
R

k = as:

ε

ε

ε

ε
α

2

2

2

1
2

R
S

S
R

R
S

SS
R

+

+
=

+

++







−

=
 (6.1)

Considering ε ≈ 0 the approximation ratio becomes:

2
R

=α (6.2)

This implies that when the size of the terminal set
grows and the number of discovered terminals k is close
to

2
R the approximation ratio can become large. Still,

the approximation ratio seems to be bounded to
2
R ,

because adding terminal node on the left hand side and
removing one terminal node from the right hand side
makes the optimal path longer while keeping the
discovered path almost the same (decreased by ε). In
contrast by adding a terminal node on the right hand side
and removing one terminal node from the left hand side
makes the discovered path shorter while keeping the
optimal path the same. Also decreasing k from

2
R will

decrease the length of the discovered path faster than the
optimal path thus giving a lower approximation ratio.
Increasing k will lengthen the optimal path faster than
the discovered path resulting in a lower approximation
ratio than

2
R .

As a summary, the approximation ratio of the
algorithm depends on the number of available resources
and can be no less than

2
R . It is still left for future work

to show that the ratio could not be even worse. There are
however approximation algorithms for k-Steiner
Minimum Tree, which achieve constant factor
approximation ratios [3]. They rely on integer
programming and by relaxing the constraints to a linear
program sustain approximation ratio guarantees.
7. Simulations

In this section we present an analysis of five
algorithms: Breadth-First Search (BFS) [13],
Self-avoiding Random Walk (RWSA), Highest Degree
Search (HDS) [1,10], Dynamic Query Protocol (DQP)
[6] and MST k-Steiner Minimum Tree. The simulations
were conducted in P2PRealm network simulator.
7.1. Peer-to-Peer Network Scenarios

 As simulation scenarios we used power-law graphs,
normal distributed random graphs and a recently
measured topology of Gnutella2 P2P network [21] with
an edge cost 1 for all edges. Power-law graphs were
generated using Barabási-Albert model [2]. In
power-law network few hub nodes have many neighbors

s
ss s

ε
εε

ε 2
R

1
2

−
R

Figure 2. A graph where MST k-Steiner makes a

large approximation error

and many nodes have only few neighbors. Gnutella2
topology was obtained by extracting the largest
connected component from the topology data of
02/02/05 presented in [21] and removing those nodes
whose edges were not referenced by other nodes. Finally
those edges whose one end point was missing were
removed.

Resource instances were allocated for power-law and
random graphs based on the number of neighbors each
node had such that the number of different resource
instances in a node was the same as the number of
neighbors the node had. This means that in the
power-law graphs the hubs were more likely to contain
the queried resource. Resources were allocated to nodes
by randomly sampling from a uniform distribution. The
queried resources and the querying nodes were selected
also randomly from a uniform distribution for each
query.

In Gnutella2 topology the resources were allocated
based on the measured resource distributions of
Gnutella network in September 2003 [14]. The number
of different resources was selected to be 10, so the
topology files could be kept small enough, but the
number of resource instances for each resource was
sampled from the resource distribution of [14] which
produced 43216 different resources instances. These
resource instances were allocated randomly to nodes
following the measured distribution of shared files in
nodes [14] such that one node could not have multiple
instances of the same resource. Now when 100 queries
were executed each resource was queried multiple
times, but from a different location, which was
randomly selected. The queried resource was selected
according to the peer keyword distribution of [14].

Table 1 illustrates the characteristics of each scenario
used in the simulations.

7.2. Results
The tests were conducted by varying the target

amount of resource instances that was needed to be
found by the algorithms. The target percentage of the
discovered resource instances determines the amount
how many resource instances of a certain resource needs
to be discovered out of all resource instances of that
resource and represents the k parameter of the Rooted
k-SMT problem. The measured variables were the

average number of query packets used in a query as
shown in figures 3, 4 and 5 and the average number of
maximum hops as shown in figures 6, 7 and 8.

As can be seen from Figure 3 in power-law graphs
MST k-Steiner algorithm produces query paths between
one and two orders of magnitude shorter than local
search algorithms. Also, the approximation error of
MST k-Steiner in the scenario is at most 2=α , because
the theoretical optimum is k-1 query packets when each
node can have only one instance of the queried resource.
k-1 represents a situation that each forwarded query
packet would locate one new resource instance and the
query originator does not have the queried resource.

The performance of HDS is close to the paths of MST
k-Steiner algorithm when only one or two instances of
resources needs to be located (resource percentage <
3%). This is a bit surprising even though the scenario is
designed directly for HDS type of algorithms. The
resources are discovered more probably in the center of
the network and as noted in [1] HDS travels those nodes
early in the search process. However, when more
resources needs to be discovered HDS travels multiple
times to the central nodes and sometimes randomly
forward the query packet decreasing the performance.
Compared to RWSA and BFS, HDS performs
significantly better when half of the available resource
instances needs to be located and after that RWSA
becomes a better algorithm. BFS in turn is at the same
level with RWSA when less than 40% of resources
needs to be located having TTL values between 1 and 4.
With TTL values 5-7 BFS cannot keep up with RWSA.
DQP is significantly less performing than BFS when
small amount of resource instances needs to be located,
because DQP requires always executing a two hop query
first. DQP however reaches the same level with BFS
when 40% or more resources needs to be located.
Because of maximum TTL restrictions DQP cannot
locate more than 60% of available resource instances.

In normal distributed graphs, as shown in Figure 4,
MST k-Steiner retains its characteristics having largest
approximation error at most 4=α . Normal distributed
graphs have larger diameter than power law distributed
graphs and therefore estimating the optimal performance
with k is too pessimistic. This argument is supported by
the fact, that when 100% of resource instances needs to
be discovered, the approximation ratio is at maximum

2=α as discussed in Section 6. It is therefore not clear,
whether as short paths as k would exist in the normal
distributed graph and presumably the real
approximation error is at a similar range as in power-law
graphs. Thus we conclude that the approximation ratio
derived in section 6 highly overestimates the optimal
performance in power-law and normal distributed P2P
scenarios.

Table 1. Simulation Scenarios
Scenario PL10000 N10000 Gnutella2
Distribution Power-Law Normal -
Nodes 10000 10000 74297
Edges 19997 19997 609036
Largest hub 161 11 360
Resources 1000 1000 10
Res. instances 39994 39994 43216
Queries 100 100 100
Diameter 8 10 12

The difference between local search algorithms and
MST k-Steiner paths is again in the order of one or two
magnitudes. In contrast to power-law graphs, the local
search algorithms in normal distributed graphs have
similar performance when less than half of available
resource instances needs to be located. After that RWSA
and HDS outperform BFS. Random graph does not
contain hub nodes and therefore HDS does not benefit
from its ability to travel to high degree nodes. Basically,
HDS appears as a self-avoiding random walker, because
all the neighbors are almost equally connected. The
large diameter of normal distributed graph restricts DQP

to locate only 7% of resource instances with time-to-live
4.

In Gnutella2 topology, as shown in Figure 5, MST
k-Steiner does not seem to make any approximation
error suggesting that Gnutella2 topology is highly
connected and thus allowing each hop of a query to
locate a new resource instance. The difference between
MST k-Steiner paths and local search algorithms is in
the order of a magnitude. HDS and RWSA perform
equally well and BFS can keep up with them to 40% of
resource instances. Then BFS departs to the level of
DQP, which can locate at maximum 60% of resource
instances.

1

10

100

1000

10000

100000

0,0 20,0 40,0 60,0 80,0 100,0

% of Re sources

Pa
ck

et
s

/ q
ue

ry
DQP BFS RWSA
HDS k-Steiner k

Figure 3. Query packets in PL10000

1

10

100

1000

10000

100000

0,0 20,0 40,0 60,0 80,0 100,0

% of Resources

Pa
ck

et
s

/ q
ue

ry

DQP BFS RWSA
HDS k-Steiner k

Figure 4. Query packets in N10000

1

10

100

1000

10000

100000

1000000

0,0 20,0 40,0 60,0 80,0 100,0

% of Resources

Pa
ck

et
s

/ q
ue

ry

DQP BFS HDS
RWSA k-Steiner k

Figure 5. Query packets in Gnutella2

0

2

4

6

8

10

12

14

16

0,0 20,0 40,0 60,0 80,0 100,0
% of Resources

H
op

s

k-Steiner DQP BFS

Figure 6. Maximum number of hops in PL10000

0

5

10

15

20

25

30

35

40

45

0 ,0 20,0 40,0 60,0 80,0 100 ,0

% o f R eso ur ces

H
op

s

k-Steiner DQP BFS

Figure 7. Maximum number of hops in N10000

0

10

20

30

40

50

60

70

0,0 20,0 40,0 60,0 80,0 100,0
% of Re source s

H
op

s

k-Steiner DQP BFS

Figure 8. Maximum number of hops in Gnutella2

The average of maximum hops for MST k-Steiner,
BFS and DQP is plotted in Figures 6, 7 and 8. HDS and
RWSA are omitted as their number of hops is shown in
Figures 3, 4 and 5. Because HDS and RWSA forward to
only one direction at a time their maximum hops are in
different scale than what MST k-Steiner, BFS and DQP
are using. Therefore if low latency in the network is
critical, HDS and RWSA may not be suitable as local
search algorithms. From the Figures 6 and 7, it can be
seen that BFS and DQP require in N10000 two or three
hops more than in PL10000 to locate the same amount of
resource instances. BFS locates the shortest paths to
resources and therefore has a small latency. However,
MST k-Steiner does not seem to be using these paths.
Reason for this is that the shortest paths do not
necessarily contain resources along the path and
therefore collecting some resources using a longer route
may lead to a path which is more efficient. The latency
in power-law graphs also stays comparable to BFS, but
in normal distributed graphs the length of query paths
grows significantly. This is, however, in completely
different scale than the hops used by HDS and RWSA.

8. Conclusion
The Rooted k-Steiner Minimum Tree problem

connects the resource discovery problem to a solid
foundation of graph theory providing means to calculate
near-optimal query paths in a graph. The MST k-Steiner
algorithm computes an approximation of the shortest
tree between the querying node and the nodes having the
queried resource instances and thus is an upper bound
for the performance of local search algorithms. The
algorithm can be used in cases, where nodes contain
only one instance of queried resource and the problem
has to be further extended if multiple resource instances
in a node is to be supported. In overall, the results
presented here show that local search algorithms
commonly used in P2P networks are far from optimal
paths.

Based on the findings in Gnutella2 topology, DQP
has slightly lower performance than BFS, but because of
automatic adaptation of time-to-live parameter it can be
feasibly used in current P2P networks. HDS and RWSA
suffer from implementation problems because to avoid
already visited nodes they need to keep record of visited
nodes and therefore the size of the query packet grows in
large graphs limiting their use.

What makes the resource discovery problem hard in
P2P networks is that only local information is available.
It would be interesting to know how close to the
optimum can algorithms get using local knowledge. A
record of the global network topology is used in Open
Shortest Path First [17] IP routing protocol and
Dijkstra’s algorithm for computing the shortest paths
suggesting possibilities that MST k-Steiner tree

algorithm could be adapted to distributed P2P networks.
In this case, information about the resources needs to be
at least partially cached in the nodes. This, however,
needs further research.
References
[1] L. A. Adamic, R. M. Lukose, B. A. Huberman, ”Local Search in

Unstructured Networks”, Handbook of Graphs and Networks: From the
Genome to the Internet, Wiley-VCH, 2003, pp. 295-317.

[2] A.-L. Barabási, R. Albert, ”Emergence of Scaling in Random Networks”,
Science 286, 1999, pp. 509-512.

[3] F. A. Chudak, T. Roughgarden, D. P. Williamson, “Approximate k-MSTs
and k-Steiner Trees via the Primal-Dual Method and Lagrangean
Relaxation”, Proceedings of the 8th International Integer Programming and
Combinatorial Optimization Conference (IPCO), Springer, 2001, pp.
60-70.

[4] A. Crespo, H. Garcia-Molina, “Routing Indices For Peer-to-Peer Systems”,
Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS’02), IEEE Press, 2002, pp. 23-33.

[5] S. Daswani, A. Fisk, “Gnutella UDP extension for scalable searches
(GUESS) v. 0.1”.

[6] A. Fisk, “Gnutella Dynamic Query Protocol v0.1”, Gnutella Developer’s
Forum, May 2003.�

[7] M. Harchol-Balter, T. Leighton, D. Lewin, “Resource Discovery in
Distributed Networks”, 18th Annual ACM-SIGACT/SIGOPS Symposium
on Principles of Distributed Computing (PODC’99), Atlanta, 1999.

[8] V. Kalogeraki, D. Gunopulos, D. Zeinalipour-Yatzi, “A Local Search
Mechanism for Peer-to-Peer Networks”, Proceedings of the 11th
International Conference on Information and Knowledge Management,
ACM Press, 2002, pp. 300-307.

[9] R. M. Karp, ”Reducibility Among Combinatorial Problems”, Complexity
of Computer Computations, Plenum Press, New York, 1975, pp. 85-103.

[10] B. J. Kim, C. N. Yoon, S. K. Han, H. Jeong, “Path finding strategies in
scale-free networks”, Physical Review E 65, 2002.

[11] N. Kotilainen, M. Vapa, A. Auvinen, T. Keltanen, J. Vuori, ”P2PRealm –
Peer-to-Peer Network Simulator”, 11th International Workshop on
Computer Aided Modeling and Design of Communication Links and
Networks, IEEE Communications Society, pp. 93-99, Trento, Italy, 2006.

[12] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker, “Search and Replication in
Unstructured Peer-to-Peer Networks”, Proceedings of the 16th International
Conference on Supercomputing, ACM Press, 2002, pp. 84-95.

[13] N. Lynch, “Distributed Algorithms”, Morgan Kauffmann Publishers, 1996.
[14] P. Makosiej, G. Sakaryan, H. Unger, “Measurement Study of Shared

Content and User Request Structure in Peer-to-Peer Gnutella Network”,
Proceedings of Design, Analysis, and Simulation of Distributed Systems
(DASD 2004), Arlington, USA, April 2004. pp. 115-124.

[15] K. Mehlhorn, “A faster approximation algorithm for the Steiner problem in
graphs”, Information Processing Letters, vol. 27 issue 3, 1988, p. 125-128.

[16] D. A. Menascé, “Scalable P2P Search”, IEEE Internet Computing, Vol. 7,
No. 2, March-April 2003, pp. 83-87.

[17] J. Moy, "OSPF Version 2”, RFC 2328, The Internet Society, April 1998.
[18] A. Oram, ”Peer-to-Peer: Harnessing the Power of Disruptive Technologies”,

O’Reilly & Associates, March 2001.
[19] H.-J. Prömel, A. Steger, “The Steiner Tree Problem: A Tour through

Graphs, Algorithms, and Complexity”, Advanced Lectures in Mathematics,
Vieweg Verlag, 2002.

[20] N. Sarshar, P. O. Boykin, V. P. Roychowdhury, ”Percolation Search in
Power Law Networks: Making Unstructured Peer-to-Peer Networks
Scalable”, Proceedings of the Fourth International Conference on P2P
Computing (P2P’04), IEEE Press, 2004, pp. 2-9.

[21] D. Stutzbach, R. Rejaie, S. Sen, “Characterizing Unstructured Overlay
Topologies in Modern P2P File-Sharing Systems”, Proceedings of the
ACM SIGCOMM Internet Measurement Conference, Berkeley, October
2005.

[22] D. Tsoumakos, N. Roussopoulos, ”Adaptive Probabilistic Search for
Peer-to-Peer Networks”, Proceedings of the Third International Conference
on P2P Computing (P2P’03), IEEE Press, 2003, pp. 102-109.

[23] M. Vapa, N. Kotilainen, A. Auvinen, H. Kainulainen, J. Vuori, ”Resource
Discovery in P2P Networks Using Evolutionary Neural Networks”,
International Conference on Advances in Intelligent Systems – Theory and
Applications (AISTA 2004), 2004.

[24] B. Y. Wu, K.-M. Chao, ”Spanning Trees and Optimization Problems”,
Discrete Mathematics and Its Applications, Chapman & Hall/CRC, 2004.

[25] B. Yang, H. Garcia-Molina, “Improving Search in Peer-to-Peer Networks”,
Proceedings of the 22nd IEEE International Conference on Distributed
Computing Systems (ICDCS’02), IEEE Press, 2002, pp. 5-14.

