
P2PDisCo – Java Distr ibuted Computing for Workstations
Using Chedar Peer-to-Peer Middleware

Kotilainen N.∗, Vapa M.+, Weber M., Töyrylä J. and Vuori J.
University of Jyväskylä, P.O.Box 35 (Agora), 40014 University of Jyväskylä

[niko.kotilainen, mikko.vapa, mweber, joni.toyryla, jarkko.vuori] @jyu.fi

∗ The work of N. Kotilainen is supported by Innovations in Business, Communication and Technology (InBCT) project.
+ The work of M. Vapa is supported by Graduate School in Electronics, Telecommunications and Automation (GETA).

Abstract

This paper introduces Peer-to-Peer Distributed

Computing (P2PDisCo) software, which provides an
interface for distributing the computation of Java
programs to multiple workstations. P2PDisCo can be used
to distribute any Java program that uses files for storing
input and output parameters without significant code
modifications to the Java program itself. P2PDisCo has
been built over Chedar peer-to-peer middleware and is
currently being used for speeding up the training of neural
networks with evolutionary algorithm.

Keywords: peer-to-peer, distributed computing, Java,
P2PDisCo, Chedar P2P middleware

1. Introduction

Peer-to-Peer (P2P) networks allow sharing of resources

over the Internet. The resources can be for example,
computing power, storage space, network bandwidth,
printers etc. For sharing computing power, peer-to-peer
networks are a natural choice, because many workstations
are running idle most of the time.

In contrast to clusters, in P2P networks all the tasks and
responsibilities for managing the network are shared
between the peers. This means that there exists no single
control entity responsible for providing the services. Also,
because P2P networks do not require a dedicated hardware,
distributing computation among workstations is usually a
cost-effective solution.

Distributed computing on workstations is mostly known
of SETI@home [1], which uses master-slave architecture
for distributing the analysis of radio signals obtained from
space to workstations. In this paper we present a
peer-to-peer system, in which all the connected peers can
work as master nodes initiating computations and also as
slaves processing computations when idling.

The paper is structured as follows. Section 2 describes
the related work in the area of P2P distributed computing.
Section 3 introduces Chedar peer-to-peer middleware and
section 4 the P2PDisCo peer-to-peer distributed computing
software and its application programming interface (API).
In section 5 we discuss the experiences gained from the use
of P2PDisCo for distributing the training of neural network
with evolutionary optimization algorithm and the planned
future work. Section 6 concludes the paper.

2. Related Work

Nowadays there are many alternatives for distributed

computing using Java programming language. One class of
software is formed by programming language independent
distributed computing tools that support Java. An example
of such software is Globus Toolkit [2], in which Java
Commodity Grid kit [3] provides an interface for accessing
Globus services using Java programs. Globus contains
mechanisms for code mobility which poses risks on
security because the downloaded code needs to come from
a trusted source or otherwise guaranteed to not be
malicious. In our approach we have avoided the use of
mobile code and the installation of the executed Java
Archive file (jar) is done semiautomatically using copying
scripts or by the user who donates computing power for the
Chedar peer-to-peer network. Also Globus uses centralized
indexes for resource discovery whereas in P2PDisCo the
resource discovery is decentralized and provided by the
Chedar peer-to-peer network.

Programming language dependent class of Java
distributed computing can be divided in two: Java
extensions and Java libraries. Java extensions such as
JavaParty [4] provide special distribution mechanisms
requiring changes to the Java compiler and/or Java Virtual
Machine (JVM). This is a drawback considering the
difficulty of executing the distributed code. Java libraries
provide special class libraries for the distribution without

need for modifications to the Java compiler or JVM.
Therefore Java libraries are easier to deploy. An example
of such library is JavaSymphony [5] as well as P2PDisCo
presented in this paper. In JavaSymphony all the
computing resources are centrally configured under
JS-Shell whereas in P2PDisCo no central management
exists.

There are also some implementations of Java
distributed computing that use peer-to-peer network for
locating the resources. In such design the resource index
has been decentralized and peers cooperatively route
resource queries among each other. An example of such
system is GT-P2PRMI [6] which allows Remote Method
Invocation (RMI) lookups to be performed through an
extended version of RMIRegistry called P2PRMIRegistry.
P2PRMIRegistry is used to form the overlay network, for
binding and publishing the remote methods and for looking
up the published remote methods.

3. Chedar P2P Middleware

Chedar (CHEap Distributed ARchitecture) is

peer-to-peer middleware designed for peer-to-peer
applications. Chedar constructs a pure peer-to-peer
network using topology management algorithms and
provides functionalities for locating resources in the
network. The original goal of Chedar was to locate unused
resources in a computer network that could be used for a
given purpose; one could thus locate idle computers with a
given characteristics in order to run computationally
intensive calculations. It has then been extended to handle
any type of resource: data (files), software (e.g. operating
systems or specific applications) and hardware (e.g.
computers, printers and displays). Implementation of
Chedar is based on Java programming language, thus the
software is platform independent and provides easy
adaptation to different hardware.

Chedar nodes are identified with a pseudo-unique
identifier called Chedar ID. Each node maintains a
database of locally available resources shared by the owner
of the device. These resources can include for example
files and databases, software running on the device that can
be accessed or used by remote users, and hardware
characteristics of the device. Also, remote resources
discovered on the network can be added to the database
combined with information about their owner identified by
Chedar ID and meta-information about themselves.
Meta-information can contain e.g. type and path for the
files, name and version for applications or any useful
description for the hardware depending on the application,
which is using the information. The resource database is
stored as an XML document using a specific DTD. This
organization of data allows making rich and complex
queries to the database in the form of XPath expressions.

Chedar node keeps a list of neighbors it is connected to

through TCP sockets. TCP provides reliable data delivery
between the end points and thus also the disappearance of a
neighbor can be detected. The neighbor list is updated
based on heuristics such as the number of relayed query
replies and the actual query replies provided by the
neighbor to form an efficient topology for resource
discovery. Currently, we use as a query mechanism
breadth-first search algorithm (BFS), where query is
forwarded to each neighbor except the one from which the
query was received. Also, if the query has already been
received it is not forwarded further. The number of hops
that a query can take is limited in BFS with a time-to-live
value. BFS is suitable for small-sized networks and
guarantees to locate all resources from the network within
the time-to-live horizon, but if the network grows larger
the time-to-live value has to be decreased. In our
experiments the network size of 200 workstations with 100
Mb/s Ethernet connections the query traffic has not yet
posed a significant problem and therefore a more efficient
version of the query algorithm has not been implemented.

Each query contains a Message-ID and a query XPath
description. Whenever a query enters a Chedar node, the
node checks its resource database whether it contains a
resource matching the XPath expression. If resource is
found, a reply message is sent back using the route, which
the query came from. To properly relay the reply message
back to the query originator, the message needs to contain
the same Message-ID as the query did. After the query
originator receives replies, it notifies P2PDisCo
application, which can react to collected replies. Because
the replies also contain the address of replying node, the
intermediate nodes along the path as well as the querier
learns new nodes in the network without being directly
connected to them. This information can be later used for
topology updates.

For communicating between two peers, Chedar
provides a point-to-point communication protocol
allowing basic message passing primitives to be executed
by P2P applications. The protocol uses the same path as
reply message to deliver messages between peers.

4. P2PDisCo

Peer-to-Peer Distributed Computing (P2PDisCo) was

developed for distributing computationally intensive
evolutionary optimization method to university
workstations. The workstations are basically staying idle
most of the time and therefore utilizing their processing
power only at times when they are not in use does not
interfere normal use of the computers.

P2PDisCo provides Distributed-interface definition
with methods for starting and stopping the distributed
application and checking whether the application is
currently running. This interface needs to be implemented
by the distributed application and is invoked by P2PDisCo.

The application is also required to read its parameters from
a file and write its output to a file provided by P2PDisCo.
The idea is that P2PDisCo pretends to the application that
the application is reading all input data from files, but
instead the file is delivered from Chedar and thus the
application does not see a difference whether it is running
remotely or locally. Also this ensures that the computing
node does not need to store any data on its hard drive
because Chedar delivers the data produced by application
through TCP connections to the master node. After
receiving data, master writes the received data to files on
hard drive. The architecture of P2PDisCo and Chedar is
shown in Figure 1.

 The process of distributing the computation and
collecting results using P2PDisCo is shown in Figure 2.
When a peer (denoted as Master) joins the network, it
needs to locate other peers to connect. This is currently
handled by using a predetermined list of IP addresses and
ports. If the peer has already been connected earlier to
Chedar network it uses history data for connecting to
already learned peers’ addresses. Then master starts a
query looking for idle computing resource and those peers
that are ready for computing answer. Master selects which
of the located nodes it uses for computing and distributes
tasks to these nodes, which start the computing. During the
computation, results are sent when memory buffer is full
(currently at 256 KB) to master node and therefore no data
is written to computing nodes. Also, this ensures that if the
computing node is reset the computation results are still
saved to the point of last full memory buffer update.

Because of security concerns the distributed application
has been beforehand installed to the computers and it is not
automatically delivered during the task distribution. In the
task distribution only the execution parameters i.e.
configuration files are transferred. Also, currently the IP
addresses of master nodes are restricted such that only
certain IP addresses are allowed to start computations.

5. Application Experiences And Future Work

P2PDisCo is at the moment used for speeding up the

computations of NeuroSearch resource discovery
algorithm [7] and it is deployed to more than 200
workstations of University of Jyväskylä in Agora building.
NeuroSearch is a neural network algorithm, which is
optimized using iterative evolutionary algorithm. It has
been found that the evolutionary algorithm is a stable
optimizer, but it requires much more computing power
than for example back-propagation algorithms
traditionally used for neural network training. The
selection of evolutionary algorithm was needed because in

the peer-to-peer resource discovery problem good
input-output pairs are unknown and therefore no proper
data for supervised training is available.

Based on half a year’s usage of P2PDisCo it seems that
the only major problem with P2PDisCo is the updating of
the distributed application. Now it requires that Windows
computers are updated with a script and the service running
in Windows needs to be stopped and started again. At the
moment there is no good solution how to avoid this.
Fortunately, the computers are under central
administration and the updating can be done from one
computer.

As a future work, we are planning to add automatic
resuming mechanism for computation, if computing node
leaves the network. Now the computing is only restarted,
but by checkpointing the state of current execution the
computation could be resumed in another computing node
from the point when connection was lost. Perhaps, in the
future P2PDisCo also allows master to be disconnected for
a while and collecting results afterwards from the
computing nodes. Also, in the future we are extending the
API of P2PDisCo to allow direct communication between
computing nodes. This makes it possible to parallelize the
evolutionary algorithm for multiple computers with other
architectures than master-slave, such as the panmictic
model [8].

Chedar

Master

startApplication
stopApplication
applicationRunning

Chedar

P2PDisCo

Application

queryResource
resourceReply
sendData

queryResource
sendData readFile

writeFile

receivedData registerResource
sendData

receivedData Distributed

Figure 1. Architecture of P2PDisCo and Chedar.

6. Conclusion

P2PDisCo provides decentralized architecture for

distributed computing of Java programs. P2PDisCo is built
on top of Chedar P2P middleware and requires only minor
modifications to turn an existing Java application to a
distributed one. Based on the experience of training
NeuroSearch neural network algorithm, the system seems
to perform well in a network of few hundred workstations.
As future work resuming mechanism and extension of API
to support direct communication between computing
nodes is planned.

7. References

[1] SETI@home - The Search for Extraterrestrial

Intelligence, http://setiathome.ssl.berkeley.edu/
[2] Foster I. and Kesselman C., “Globus: A

Metacomputing Infrastructure Toolkit” , The
International Journal of Supercomputer Applications
and High Performance Computing, 11(2), 1997, pp.
115-128.

[3] Von Laszewski G., Foster I., Gawor J., and Lane P., "A
Java Commodity Grid Kit” , Concurrency and
Computation: Practice and Experience, 13(8-9), 2001,
pp. 643-662.

[4] Philippsen M. and Zenger M., “JavaParty: Transparent
Remote Objects in Java” , Concurrency and
Computation: Practice and Experience, 9(11), 1997,
pp. 1225-1242.

[5] Fahringer T., “JavaSymphony: A System for
Development of Locality-Oriented Distributed and
Parallel Java Applications” , IEEE International
Conference on Cluster Computing, 2000.

[6] Chang T. and Ahamad M., “GT-P2PRMI: Improving
Middleware Performance Using Peer-to-Peer Service
Replication” , 10th IEEE International Workshop on
Future Trends of Distributed Computing Systems,
2004.

[7] Vapa M., Kotilainen N., Auvinen A., Kainulainen H.,
and Vuori J., "Resource Discovery in P2P Networks
Using Evolutionary Neural Networks", IEEE
International Conference on Advances in Intelligent
Systems – Theory and Applications, 2004.

[8] Alba E. and Tomassini M., "Parallelism and
Evolutionary Algorithms", IEEE Transactions on
Evolutionary Computation, 6(5), 2002, pp. 443-462.

Chedar
node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Chedar

node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Chedar
node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Query

Query

a) A new Chedar node (Master)
containing distributed computation
tasks joins the network.

b) Master connects to two neighbors. c) Master starts a distributed query to
locate an idle computing resource.

Chedar
node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Reply

Reply

Reply

Chedar

node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Task

Task

Task

Chedar
node

Chedar
node

Chedar
node Chedar

node

Chedar
node

Master

Result

Result

Result

d) Two idle Chedar nodes answer
with a reply

e) Master distributes tasks and two
Chedar nodes start the processing.

f) After computation Chedar nodes
send the results back to Master node.

Figure 2. The process of distributing computation and gathering the results using P2PDisCo.

